A Modified GoI Interpretation for a Linear Functional Programming Language and Its Adequacy

  • Naohiko Hoshino
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6604)


Geometry of Interaction (GoI) introduced by Girard provides a semantics for linear logic and its cut elimination. Several extensions of GoI to programming languages have been proposed, but it is not discussed to what extent they capture behaviour of programs as far as the author knows. In this paper, we study GoI interpretation of a linear functional programming language (LFP). We observe that we can not extend the standard GoI interpretation to an adequate interpretation of LFP, and we propose a new adequate GoI interpretation of LFP by modifying the standard GoI interpretation. We derive the modified interpretation from a realizability model of LFP. We also relate the interpretation of recursion to cyclic computation (the trace operator in the category of sets and partial maps) in the realizability model.


  1. 1.
    Abramsky, S., Haghverdi, E., Scott, P.J.: Geometry of interaction and linear combinatory algebras. Math. Struct. in Comput. Sci. 12(5), 625–665 (2002)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Abramsky, S., Lenisa, M.: A Fully Complete PER Model for ML Polymorphic Types. In: Clote, P., Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862, pp. 140–155. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Abramsky, S., McCusker, G.: Call-by-value games. In: Nielsen, M. (ed.) CSL 1997. LNCS, vol. 1414, pp. 1–17. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Baillot, P., Pedicini, M.: Elementary complexity and geometry of interaction. Fundam. Inf. 45(1-2), 1–31 (2001)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Barber, A., Plotkin, G.: Dual intuitionistic linear logic, Technical Reprot ECS-LFCS-96-347, LFCS, Universit of Edinburgh (1997)Google Scholar
  6. 6.
    Barber, A.G.: Linear Type Theories, Semantics and Action Calculi. PhD thesis, University of Edinburgh (1997)Google Scholar
  7. 7.
    Bierman, G.M.: What is a categorical model of intuitionistic linear logic? In: Dezani-Ciancaglini, M., Plotkin, G. (eds.) TLCA 1995. LNCS, vol. 902, pp. 78–93. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  8. 8.
    Bierman, G.M., Pitts, A.M., Russo, C.V.: Operational properties of lily, a polymorphic linear lambda calculus with recursion. Electr. Notes Theor. Comput. Sci. 41(3) (2000)CrossRefGoogle Scholar
  9. 9.
    Birkedal, L., Møgelberg, R.E., Petersen, R.L.: Domain-theoretical models of parametric polymorphism. Theor. Comput. Sci. 388(1-3), 152–172 (2007)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Danos, V., Regnier, L.: Reversible, irreversible and optimal lambda-machines. Electr. Notes Theor. Comput. Sci. 3 (1996)Google Scholar
  11. 11.
    Girard, J.-Y.: Geometry of Interaction I: Interpretation of System F. In: Ferro, R., et al. (eds.) Logic Colloquium 1988. North-Holland, Amsterdam (1989)Google Scholar
  12. 12.
    Girard, J.-Y.: Geometry of Interaction II: Deadlock-free Algorithms. In: Martin-Löf, P., Mints, G. (eds.) COLOG 1988. LNCS, vol. 417, pp. 76–93. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  13. 13.
    Girard, J.-Y., Lafont, Y., Taylor, P.: Proofs and Types. Cambridge University Press, Cambridge (1989)zbMATHGoogle Scholar
  14. 14.
    Gonthier, G., Abadi, M., Lévy, J.-J.: The geometry of optimal lambda reduction. In: POPL, pp. 15–26 (1992)Google Scholar
  15. 15.
    Haghverdi, E.: A Categorical Approach to Linear Logic, Geometry of Proofs and Full Completeness. PhD thesis, University of Ottawa (2000)Google Scholar
  16. 16.
    Haghverdi, E., Scott, P.J.: A categorical model for the geometry of interaction. Theor. Comput. Sci. 350(2-3), 252–274 (2006)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hasegawa, M.: On traced monoidal closed categories. Mathematical Structures in Computer Science 19(2), 217–244 (2009)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Jones, S.P.: The Implementation of Functional Programming Languages. Prentice Hall, Englewood Cliffs (1987)zbMATHGoogle Scholar
  19. 19.
    Joyal, A., Street, R., Verity, D.: Traced monoidal categories. Mathematical Proceedings of the Cambridge Philosophical Society 119(3), 447–468 (1996)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Mackie, I.: The geometry of interaction machine. In: POPL, pp. 198–208 (1995)Google Scholar
  21. 21.
    Melliès, P.-A.: Functorial Boxes in String Diagrams. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 1–30. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Simpson, A.K.: Reduction in a Linear Lambda-Calculus with Applications to Operational Semantics. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 219–234. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    van Oosten, J.: A combinatory algebra for sequential functionals of finite type. In: Cooper, S.B., Truss, J.K. (eds.) Models and Computatbility. Cambridge University Press, Cambridge (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Naohiko Hoshino
    • 1
  1. 1.Research Institute for Mathematical ScienceKyoto universityJapan

Personalised recommendations