A Game Approach to Determinize Timed Automata

  • Nathalie Bertrand
  • Amélie Stainer
  • Thierry Jéron
  • Moez Krichen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6604)


Timed automata are frequently used to model real-time systems. Their determinization is a key issue for several validation problems. However, not all timed automata can be determinized, and determinizability itself is undecidable. In this paper, we propose a game-based algorithm which, given a timed automaton with ε-transitions and invariants, tries to produce a language-equivalent deterministic timed automaton, otherwise a deterministic over-approximation. Our method subsumes two recent contributions: it is at once more general than the determinization procedure of [4] and more precise than the approximation algorithm of [11].


  1. 1.
    Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2), 183–235 (1994)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Alur, R., Fix, L., Henzinger, T.A.: A determinizable class of timed automata. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 1–13. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  3. 3.
    Asarin, E., Maler, O., Pnueli, A., Sifakis, J.: Controller synthesis for timed automata. In: Proceedings of the 5th IFAC Symposium on System Structure and Control (SSSC 1998), pp. 469–474. Elsevier Science, Amsterdam (1998)Google Scholar
  4. 4.
    Baier, C., Bertrand, N., Bouyer, P., Brihaye, T.: When are timed automata determinizable? In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 43–54. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Baier, C., Bertrand, N., Bouyer, P., Brihaye, T.: When are timed automata determinizable? Research Report LSV-09-08, Laboratoire Spécification et Vérification, ENS Cachan, France, April 2009, 32 pages (2009)CrossRefGoogle Scholar
  6. 6.
    Bertrand, N., Stainer, A., Jéron, T., Krichen, M.: A game approach to determinize timed automata. Research Report 7381, INRIA (September 2010),
  7. 7.
    Bouyer, P.: From Qualitative to Quantitative Analysis of Timed Systems. Mémoire d’habilitation, Université Paris 7, Paris, France (January 2009)Google Scholar
  8. 8.
    Bouyer, P., Chevalier, F., D’Souza, D.: Fault diagnosis using timed automata. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 219–233. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Finkel, O.: Undecidable problems about timed automata. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 187–199. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games: A Guide to Current Research. LNCS, vol. 2500. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  11. 11.
    Krichen, M., Tripakis, S.: Conformance testing for real-time systems. Formal Methods in System Design 34(3), 238–304 (2009)CrossRefGoogle Scholar
  12. 12.
    Manasa, L., Krishna, S.N.: Integer reset timed automata: Clock reduction and determinizability. CoRR arXiv:1001.1215v1 (2010)Google Scholar
  13. 13.
    Suman, P.V., Pandya, P.K., Krishna, S.N., Manasa, L.: Timed automata with integer resets: Language inclusion and expressiveness. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 78–92. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Tripakis, S.: Folk theorems on the determinization and minimization of timed automata. Information Processing Letters 99(6), 222–226 (2006)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Nathalie Bertrand
    • 1
  • Amélie Stainer
    • 1
  • Thierry Jéron
    • 1
  • Moez Krichen
    • 2
  1. 1.INRIA RennesBretagne AtlantiqueRennesFrance
  2. 2.Institute of Computer Science and MultimediaSfaxTunisia

Personalised recommendations