Abstract

I give a non-comprehensive survey of the categorical quantum mechanics program and how it guides the search for structure in quantum computation. I discuss the example of measurement-based computing which is one of the successes of such an enterprise and briefly mention topological quantum computing which is an inviting target for future research in this area.

References

  1. 1.
    Bennett, C.H., Brassard, G.: Quantum cryptography: Public-key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, pp. 175–179 (December 1984)Google Scholar
  2. 2.
    Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factoring. In: Goldwasser, S. (ed.) Proc. 35nd Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE Computer Society Press, Los Alamitos (1994)CrossRefGoogle Scholar
  3. 3.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Computing 26, 1484–1509 (1997)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    D’Hondt, E., Panangaden, P.: The computational power of the W and GHZ states. Quantum Information and Computation 6(2), 173–183 (2006)MathSciNetMATHGoogle Scholar
  5. 5.
    Bennett, C.H., Brassard, G., Crepeau, C., Josza, R., Peres, A., Wootters, W.: Teleporting an unknown quantum state via dual classical and epr channels. Phys. Rev. Lett. 70, 1895–1899 (1993)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Gay, S.: Quantum programming languages: Survey and bibliography. Bulletin of the EATCS 86, 176–196 (2005)MathSciNetMATHGoogle Scholar
  7. 7.
    Selinger, P.: Towards a quantum programming language. Mathematical Structures in Computer Science 14(4), 527–586 (2004)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Selinger, P.: A brief survey of quantum programming languages. In: Kameyama, Y., Stuckey, P.J. (eds.) FLOPS 2004. LNCS, vol. 2998, pp. 1–6. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Selinger, P., Valiron, B.: Quantum lambda calculus. In: Gay, S., Mackie, I. (eds.) Semantic Techniques in Quantum Computation. Cambridge University Press, Cambridge (2009) (to appear)Google Scholar
  10. 10.
    van Tonder, A.: A lambda calculus for quantum computation. Siam Journal on Computing 33(5), 1109–1135 (2004)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001)CrossRefGoogle Scholar
  12. 12.
    Mermin, D.: Boojums all the way through. Cambridge University Press, Cambridge (1990)CrossRefGoogle Scholar
  13. 13.
    von Neumann, J.: Mathematisch Grunglagen der Quantenmechanik. Springer, Heidelberg (1932); English translation. Princeton University Press, Princeton (1955)Google Scholar
  14. 14.
    Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Annals of Mathematics 37(4), 823–843 (1936)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Piron, C.: Foundations of quantum physics. W. A. Benjamin (1976)Google Scholar
  16. 16.
    Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science: LICS 2004, pp. 415–425. IEEE Computer Society, Los Alamitos (2004)CrossRefGoogle Scholar
  17. 17.
    Coecke, B.: Kindergarten quantum mechanics (2005), available on the ArXivquant-ph/0510032 Google Scholar
  18. 18.
    Selinger, P.: A survey of graphical languages for monoidal categories. In: New Structures for Physics, pp. 289–356. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Feynman, R.P.: The theory of positrons. Physical Review 76, 749–759 (1949)CrossRefMATHGoogle Scholar
  20. 20.
    Feynman, R.P.: The space-time approach to quantum electrodynamics. Physical Review 76, 769–789 (1949)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Penrose, R.: Applications of negative dimensional tensors. In: Welsh, D.J.A. (ed.) Combinatorial Mathematics and its Applications. Academic Press, London (1971)Google Scholar
  22. 22.
    Joyal, A., Street, R.: The geometry of tensor calculus. Advances in Mathematics 88, 55–112 (1991)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Coecke, B., Edwards, B., Spekkens, R.: The group theoretic origin of non-locality for qubits. Technical Report RR-09-04, OUCL (2009)Google Scholar
  24. 24.
    Coecke, B., Kissinger, A.: The compositional structure of multipartite quantum entanglement. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010, Part II. LNCS, vol. 6199, pp. 297–308. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  25. 25.
    Coecke, B., Duncan, R.: Interacting quantum observables. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 298–310. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  26. 26.
    Abramsky, S.: Relational hidden variables and non-locality, arXiv:1007.2754 (July 2010)Google Scholar
  27. 27.
    Deutsch, D.: Quantum computational networks. Proc. Roy. Soc. Lond. A 425 (1989)Google Scholar
  28. 28.
    Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM Journal of Computing 5(26) (1997)Google Scholar
  29. 29.
    Deutsch, D.: Quantum theory, the Church-Turing Principle and the universal quantum computer. Proc. Roy. Soc. Lond. A 400, 97 (1985)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Gottesman, D., Chuang, I.L.: Quantum teleportation is a universal computational primitive. Nature 402 (1999)Google Scholar
  31. 31.
    Nielsen, M.A.: Universal quantum computation using only projective measurement, quantum memory, and preparation of the 0 state. Physical Review A 308 (2003)Google Scholar
  32. 32.
    Raussendorf, R., Browne, D.E., Briegel, H.J.: Measurement-based quantum computation on cluster states. Phys. Rev. A 68(2), 022312 (2003)CrossRefGoogle Scholar
  33. 33.
    Nielsen, M.A.: Optical quantum computation using cluster states. Physical Review Letters 93 (2004), quant-ph/0402005Google Scholar
  34. 34.
    Childs, A.M., Leung, D.W., Nielsen, M.A.: Unified derivations of measurement-based schemes for quantum computation. Physical Review A 71 (2005), quant-ph/0404132Google Scholar
  35. 35.
    Browne, D.E., Rudolph, T.: Resource-efficient linear optical quantum computation. Physical Review Letters 95 (2005), quant-ph/0405157Google Scholar
  36. 36.
    Hein, M., Eisert, J., Briegel, H.J.: Multi-party entanglement in graph states. Physical Review A 69 (2004), quant-ph/0307130Google Scholar
  37. 37.
    Danos, V., Kashefi, E., Panangaden, P.: The measurement calculus. Journal Of The Association of Computing Machinery 52(2), article 8 (April 2007)Google Scholar
  38. 38.
    Vincent Danos, E.K., Panangaden, P.: Parsimonious and robust realizations of unitary maps in the one-way model. Physical Review A 72, 064301 (2005)CrossRefGoogle Scholar
  39. 39.
    Broadbent, A., Kashefi, E.: Parallelizing quantum circuits. Theoretical Computer Science 410(26), 2489–2510 (2009)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Danos, V., Kashefi, E.: Determinism in the one-way model. Physical Review A 74(5), 6 (2006)CrossRefGoogle Scholar
  41. 41.
    Kitaev, A.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303(1), 3–20 (2003)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Wilczek, F.: Magnetic flux, angular momentum, and statistics. Phys. Rev. Lett. 48(17), 1144–1146 (1982)CrossRefGoogle Scholar
  43. 43.
    Wilczek, F.: Quantum mechanics of fractional-spin particles. Phys. Rev. Lett. 49(14), 957–959 (1982)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Freedman, M.H., Larsen, M., Wang, Z.: A modular functor which is universal for quantum computation. Communications in Mathematical Physics 227(3), 605–622 (2002)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Freedman, M.H., Kitaev, A., Larsen, M., Wang, Z.: Topological quantum computing. Bulletin of the AMS 40(1), 31–38 (2003)CrossRefMATHGoogle Scholar
  46. 46.
    Bakalov, B., Kirillov, A.: Lectures on tensor categories and modular functors. American Mathematical Society in University Lecture Series (2001)Google Scholar
  47. 47.
    Panangaden, P., Paquette, E.: A categorical presentation of quantum computation with anyons. In: New Structures for Physics, pp. 983–1026. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Prakash Panangaden
    • 1
    • 2
  1. 1.School of Computer ScienceMcGill UniversityCanada
  2. 2.Computing LaboratoryUniversity of OxfordUK

Personalised recommendations