Advertisement

Developing Analytical GIS Applications with GEO-SPADE: Three Success Case Studies

  • Slava Kisilevich
  • Daniel Keim
  • Amit Lasry
  • Leon Bam
  • Lior Rokach
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 73)

Abstract

Geographic Information Systems (GIS) handle a wide range of problems that involve spatial distribution data from fields as diverse as housing, healthcare, transportation, cartography, criminology, and many others. Selecting the right GIS is determined by the task the user wishes to perform. Some considerations may include the availability of analytical functions, performance, ease of use, interoperability, extensibility, etc. Nowadays, as positioning technology proliferates and affects almost all aspects of our lives, GIS tools have become more and more complex as researchers seek to address and implement, respectively, new spatial tasks and techniques. Due to the rapid growth of GIS in recent years, many provide APIs for extending their software for specific needs. But learning a complex set of API functions, is not feasible in scenarios that demand rapid prototyping like in academic research or when the tool is supposed to be used by non-professionals. In this paper, we present three case studies that are performed on top of a GEO-SPADE, a Google Earth-based .NET-based framework that we developed. Unlike the typical APIs, that may often contain more than hundred or thousand of functions from different logical layers, the GEO-SPADE framework provides only the minimal set of functions for plug-in development, networking, and visualization using Google Earth engine. The extended functionality is provided by the developer and depends on her knowledge of the underlying language. At the same time, the ease of use is achieved by the functionality of Google Earth. The three presented case studies showcase the applicability of the Google Earth-based framework in different domains with different analytical tasks (spatial analysis, spatial exploration, and spatial decision support).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Peters, D.: Building a GIS: System Architecture Design Strategies for Managers. ESRI Press (2008)Google Scholar
  2. 2.
    Friis-Christensen, A., Ostlander, N., Lutz, M., Bernard, L.: Designing service architectures for distributed geoprocessing: Challenges and future directions. Transactions in GIS 11(6), 799 (2007)CrossRefGoogle Scholar
  3. 3.
    Diaz, L., Granel, C., Gould, M., Olaya, V.: An open service network for geospatial data processing. In: An Open Service Network for Geospatial Data Processing: Free and Open Source Software for Geospatial (FOSS4G) Conference (2008)Google Scholar
  4. 4.
    Schaeffer, B., Foerster, T.: A client for distributed geo-processing and workflow design. Location Based Services Journal 2(3), 194–210 (2008)CrossRefGoogle Scholar
  5. 5.
    Foerster, T., Schaeffer, B., Brauner, J., Jirka, S., Muenster, G.: Integrating ogc web processing services into geospatial mass-market applications. In: International Conference on Advanced Geographic Information Systems & Web Services, pp. 99–103 (2009)Google Scholar
  6. 6.
    Andrienko, G., Andrienko, N., Dykes, J., Fabrikant, S., Wachowicz, M.: Geovisualization of dynamics, movement and change: key issues and developing approaches in visualization research. Information Visualization 7(3), 173–180 (2008)CrossRefGoogle Scholar
  7. 7.
    Grossner, K.E.: Is google earth, “digital earth?” - defining a vision. University Consortium of Geographic Information Science, Summer Assembly, Vancouver, WA (2006)Google Scholar
  8. 8.
    Patterson, T.C.: Google Earth as a (not just) geography education tool. Journal of Geography 106(4), 145–152 (2007)CrossRefGoogle Scholar
  9. 9.
    Goodchild, M.: The use cases of digital earth. International Journal of Digital Earth 1(1), 31–42 (2008)CrossRefGoogle Scholar
  10. 10.
    Sheppard, S., Cizek, P.: The ethics of Google Earth: Crossing thresholds from spatial data to landscape visualisation. Journal of Environmental Management 90(6), 2102–2117 (2009)CrossRefGoogle Scholar
  11. 11.
    Farman, J.: Mapping the digital empire: Google Earth and the process of postmodern cartography. New Media & Society 12(6), 869–888 (2010)CrossRefGoogle Scholar
  12. 12.
    Smith, T., Lakshmanan, V.: Utilizing google earth as a gis platform for weather applications. In: 22nd International Conference on Interactive Information Processing Systems for Meteorology, Oceanography, and Hydrology, Atlanta, GA, January 29-February 2 (2006)Google Scholar
  13. 13.
    Wood, J., Dykes, J., Slingsby, A., Clarke, K.: Interactive visual exploration of a large spatio-temporal dataset: Reflections on a geovisualization mashup. IEEE Transactions on Visualization and Computer Graphics 13(6), 1176 (2007)CrossRefGoogle Scholar
  14. 14.
    Compieta, P., Di Martino, S., Bertolotto, M., Ferrucci, F., Kechadi, T.: Exploratory spatio-temporal data mining and visualization. Journal of Visual Languages and Computing 18(3), 255–279 (2007)CrossRefGoogle Scholar
  15. 15.
    Slingsby, A., Dykes, J., Wood, J., Foote, M., Blom, M.: The visual exploration of insurance data in google earth. In: Proceedings of Geographical Information Systems Research UK (GISRUK), pp. 24–32 (2008)Google Scholar
  16. 16.
    Pezanowski, S., Tomaszewski, B., MacEachren, A.: An open geospatial standards-enabled google earth application to support crisis management. Geomatics Solutions for Disaster Management, 225–238 (2007)Google Scholar
  17. 17.
    Di Martino, S., Bimonte, S., Bertolotto, M., Ferrucci, F.: Integrating google earth within olap tools for multidimensional exploration and analysis of spatial data. In: Proceedings of the 11th International Conference on Enterprise Information Systems, pp. 940–951 (2009)Google Scholar
  18. 18.
    Stensgaard, A., Saarnak, C., Utzinger, J., Vounatsou, P., Simoonga, C., Mushinge, G., Rahbek, C., Møhlenberg, F., Kristensen, T.: Virtual globes and geospatial health: the potential of new tools in the management and control of vector-borne diseases. Geospatial Health 3(2), 127–141 (2009)CrossRefGoogle Scholar
  19. 19.
    Kisilevich, S., Keim, D., Rokach, L.: Geo-spade: A generic google earth-based framework for analyzing and exploring spatio-temporal data. In: 12th International Conference on Enterprise Information Systems, pp. 13–20 (2010)Google Scholar
  20. 20.
    Kisilevich, S., Keim, D., Rokach, L.: A novel approach to mining travel sequences using collections of geo-tagged photos. In: The 13th AGILE International Conference on Geographic Information Science, pp. 163–182 (2010)Google Scholar
  21. 21.
    Kisilevich, S., Krstajic, M., Keim, D., Andrienko, N., Andrienko, G.: Event-based analysis of people’s activities and behavior using flickr and panoramio geo-tagged photo collections. In: The 14th International Conference Information Visualization, pp. 289–296 (2010)Google Scholar
  22. 22.
    Kisilevich, S., Rohrdantz, C., Keim, D.: “beautiful picture of an ugly place”. exploring photo collections using opinion and sentiment analysis of user comments. In: Computational Linguistics & Applications, CLA 2010 (2010)Google Scholar
  23. 23.
    Graupmann, J., Schenkel, R.: GeoSphere-Search: Context-Aware Geographic Web Search. In: 3rd Workshop on Geographic Information Retrieval (2006)Google Scholar
  24. 24.
    Ferraz, V.R.T., Santos, M.T.P.: Globeolap: Improving the geospatial realism in multidimensional analysis environment. In: 12th International Conference on Enterprise Information Systems, pp. 99–107 (2010)Google Scholar
  25. 25.
    Wachowicz, M., Ying, X., Ligtenberg, A., Ur, W.: Land use change explorer: A tool for geographic knowledge discovery. In: Anseling, L., Rey, S.J. (eds.) New Tools for Spatial Data Analysis, Proceedings of the CSISS Specialist Meeting (2002)Google Scholar
  26. 26.
    Lundblad, P., Eurenius, O., Heldring, T.: Interactive visualization of weather and ship data. In: Proceedings of the 13th International Conference Information Visualisation, Washington, DC, USA, pp. 379–386. IEEE Computer Society, Los Alamitos (2009)Google Scholar
  27. 27.
    Rigoutsos, I., Floratos, A.: Combinatorial pattern discovery in biological sequences: the TEIRESIAS algorithm. Bioinformatics-Oxford 14(1), 55–67 (1998)CrossRefGoogle Scholar
  28. 28.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.: The WEKA data mining software: An update. ACM SIGKDD Explorations Newsletter 11(1), 10–18 (2009)CrossRefGoogle Scholar
  29. 29.
    Ester, M., Kriegel, H., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proc. KDD, vol. 96, pp. 226–231 (1996)Google Scholar
  30. 30.
    Girardin, F., Fiore, F.D., Ratti, C., Blat, J.: Leveraging explicitly disclosed location information to understand tourist dynamics: a case study. Jouranl of Location Based Services 2(1), 41–56 (2008)CrossRefGoogle Scholar
  31. 31.
    Andrienko, G., Andrienko, N., Bak, P., Kisilevich, S., Keim, D.: Analysis of community-contributed space-and time-referenced data (example of panoramio photos). In: GIS 2009: Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 540–541 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Slava Kisilevich
    • 1
  • Daniel Keim
    • 1
  • Amit Lasry
    • 2
  • Leon Bam
    • 2
  • Lior Rokach
    • 3
  1. 1.Department of Computer and Information ScienceUniversity of KonstanzKonstanzGermany
  2. 2.Department of Information System EngineeringBen-Gurion University of the NegevBeer-ShevaIsrael
  3. 3.The Deutsche Telekom Laboratories, Department of Information System EngineeringBen-Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations