A Business Process Driven Approach to Manage Data Dependency Constraints

  • Joe Y. -C. Lin
  • Shazia Sadiq
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 73)


A major reason for the introduction and subsequent success of Business Process Management (BPM) and related tools is their ability to provide a clear separation between process, application and data logic. However, in spite of the abstraction value that BPM provides, a seamless flow between the technology layers has not been fully realized in mainstream enterprise software. The result of this disconnect is disparity (and even conflict) in enforcing various rules and constraints. In this paper, we address the problem of disconnect between the data relevant constraints defined within business process models and data dependency constraints defined in the data layer. We propose a business process (model) driven approach wherein such constraints can be modelled at the process level, and enforced at the data level through an (semi) automated translation into DBMS native procedures. The simultaneous specification ensures consistency of the business semantics across the process and data layers.


Business process management Data flow Constraint modelling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Date, C. J.: Referential Integrity. In: Proc. of 7th Int. Conf. on VLDB, September 9-11, Cannes, France, pp.2-12 (1981). Google Scholar
  2. 2.
    Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.: Conditional Functional Dependencies for Capturing Data Inconsistencies. ACM Transaction on Database Systems 33(2), article 6 (2008)Google Scholar
  3. 3.
    Cormode, G., Golab, L., Korn, F., McGregor, A., Srivastava, D., Zhang, X.: Estimating the Confidence of Conditional Functional Dependencies. In: 35th SIGMOD International Conference on Management of Data, pp. 469–482 (2009)Google Scholar
  4. 4.
    Bravo, L., Fan, W., Geets, F., Ma, S.: Extending dependencies with conditions. In: International Conference on Very Large Data Bases (2007)Google Scholar
  5. 5.
    Cong, G., Fan, W., Geerts, F., Jia, X., Ma, S.: Improving data quality: Consistency and accuracy. In: International Conference on Very Large Data Bases (2007)Google Scholar
  6. 6.
    Aalst, W.M.P., Hofstede, A.H.M.: Verification of workflow task structures: A Petri-net-based approach. Information Systems 25(1), 43–69 (2000)CrossRefGoogle Scholar
  7. 7.
    Object Management Group/Business Process Management Initiative, Business Process Modelling Notation, http://www.bpmn.org/
  8. 8.
    Object Management Group, Unified Modelling Language, http://www.uml.org/
  9. 9.
    Ailamaki, A., Ioannidis, Y., Livny, M.: Scientific workflow management by database management. In: Int. Conf. on Statistical and Scientific Database Management, pp. 190–199 (1998)Google Scholar
  10. 10.
    Hull, R., Llirbat, F., Simon, E., Su, J., Dong, G., Kumar, B., Zhou, G.: Declarative workflows that support easy modification and dynamic browsing. In: Int. Joint Conf. on Work Activities Coordination and Collaboration, pp. 69–78 (1999)Google Scholar
  11. 11.
    Medeiros, C., Vossen, G., Weske, M.: WASA: a workflow-based architecture to support scientific database applications. In: Revell, N., Tjoa, A.M. (eds.) DEXA 1995. LNCS, vol. 978. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  12. 12.
    Reijers, H., Limam, S., van der Aalst, W.M.P.: Product-based Workflow Design. Management Information Systems 20(1), 229–262 (2003)Google Scholar
  13. 13.
    Aalst, W.M.P., Weske, M., Grünbauer, D.: Case handling: a new paradigm for business process support. Data and Knowledge Engineering 53, 129–162 (2005)CrossRefGoogle Scholar
  14. 14.
    Wang, J., Kumar, A.: A framework for document-driven workflow systems. In: van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005. LNCS, vol. 3649, pp. 285–301. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Du, N., Liang, Y., Zhao, L.: Data-flow skeleton filled with activities driven workflow design. In: 2nd Int. Conf. on Ubiquitous Information Management and Communication, pp. 570–574 (2008)Google Scholar
  16. 16.
    Joncheere, N., Deridder, D., Van Der Straeten, R., Jonckers, V.: A Framework for Advanced Modularization and Data Flow in Workflow Systems. In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364, pp. 592–598. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Russell, N., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Workflow Data Patterns: Identification, Representation and Tool Support. In: Delcambre, L.M.L., Kop, C., Mayr, H.C., Mylopoulos, J., Pastor, Ó. (eds.) ER 2005. LNCS, vol. 3716, pp. 353–368. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Künzle, V., Reichert, M.: Towards Object-Aware Process Management Systems: Issues, Challenges, Benefits. In: Halpin, T., Krogstie, J., Nurcan, S., Proper, E., Schmidt, R., Soffer, P., Ukor, R. (eds.) BPMDS 2009. LNBIP, vol. 29, pp. 197–210. Springer, Heidelberg (2009)Google Scholar
  19. 19.
    Sun, S., Zhao, J., Nunamaker, J., Sheng, O.: Formulating the Data-Flow Perspective for Business Process Management. Information Systems Research 17(4), 374–391 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Joe Y. -C. Lin
    • 1
  • Shazia Sadiq
    • 1
  1. 1.School of Information Technology & Electrical EngineeringThe University of QueenslandBrisbaneAustralia

Personalised recommendations