Detecting Symmetries in Building Footprints by String Matching

Chapter

Abstract

This paper presents an algorithmic approach to the problem of finding symmetries in building footprints. The problem is motivated by map generalization tasks, for example, symmetry-preserving building simplification and symmetry-aware grouping and aggregation. Moreover, symmetries in building footprints may be used for landmark selection and building classification.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atallah, M. J. (1985). On Symmetry Detection. IEEE Transactions on Computers, c-34(7), 663–666.Google Scholar
  2. Cho, M. and Lee, K. M (2009). Bilateral Symmetry Detection via Symmetry- Growing. In: Proc. British Machine Vision Conference (BMVC '09).Google Scholar
  3. Christophe, S. and Ruas, A. (2002). Detecting Building Alignments for Generalisation Purposes. In: Proc. ISPRS Commission IV Symposium on GeospatialTheory, Processing and Applications. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXIV, part 4.Google Scholar
  4. Gaffuri, J. and Trévisan, J. (2004). Role of Urban Patterns for Building Generalisation: An Application of AGENT. In: Proc. 7th ICA Workshop on Generalisation and Multiple Representation.Google Scholar
  5. Gusfield, D. (1997). Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology. Cambridge University Press.CrossRefGoogle Scholar
  6. Haunert, J.-H. and Wolff, A. (2010). Optimal and Topologically Safe Simplification of Building Footprints. Pages 192–201 of: Proc. 18th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACM-GIS'10).Google Scholar
  7. Heinzle, F. and Anders, K.-H. (2007). Characterising Space via Pattern Recognition Techniques: Identifying Patterns in Road Networks. Chap. 12, pages 233–254 of: Mackaness, W., Ruas, A., and Sarjakoski, T. L. (eds), Generalisation of geographic information: Cartographic modelling and applications. Elsevier.Google Scholar
  8. Knuth, D. E., J. H. Morris, Jr., and Pratt, V. R. (1977). Fast Pattern Matching in Strings. Siam Journal on Computing, 6(2), 323–350.CrossRefGoogle Scholar
  9. Lladós, J., Bunke, H., and Martí, E. (1997). Using Cyclic String Matching to Find Rotational and Reflectional Symmetries in Shapes. Pages 164–179 of: Intelligent Robots: Sensing, Modeling and Planning. Series in Machine Perception and Artificial Intelligence, vol. 27. World Scientific.Google Scholar
  10. Loy, G. and Eklundh, J.-O. (2006). Detecting Symmetry and Symmetric Constellations of Features. Pages 508–521 of: Proc. 9th European Conference on Computer Vision (ECCV '06), Part II. Lecture Notes in Computer Science,vol. 3952. Springer.Google Scholar
  11. Mackaness, W. and Edwards, G. (2002). The Importance of Modeling Pattern and Structure in Automated Map Generalisation. In: Proc. Joint ISPRS/ICA Workshop on Multi-Scale Representations of Spatial Data.Google Scholar
  12. Mitra, N. J., Guibas, L. J., and Pauly, M. (2006). Partial and Approximate Symmetry Detection for 3D Geometry. ACM Transactions on Graphics, 25(3), 560– 568.CrossRefGoogle Scholar
  13. Neun, M., Burghardt, D., and Weibel, R. (2008). Web Service Approaches for Providing Enriched Data Structures to Generalisation Operators. International Journal of Geographic Information Science, 22(2), 133–165.CrossRefGoogle Scholar
  14. Niemeier, W. (2002). Ausgleichungsrechnung. Walter de Gruyter.Google Scholar
  15. Park, M., Lee, S., Chen, P.-C., Kashyap, S., Butt, A. A., and Liu, Y. (2008). Performance Evaluation of State-of-the-Art Discrete Symmetry Detection Algorithms. In: Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '08).Google Scholar
  16. Peters, D., Wu, Y. H., and Winter, S. (2010). Testing Landmark Identification Theories in Virtual Environments. Pages 54–69 of: Spatial Cognition. Lecture Notes in Computer Science, vol. 6222. Springer.Google Scholar
  17. Regnauld, N. (2003). Algorithms for the Amalgamation of Topographic Data. In: Proc. 21st International Cartographic Conference (ICC '03).Google Scholar
  18. Ruas, A. and Holzapfel, F. (2003). Automatic Characterization of Building Alignments by Means of Expert Knowledge. In: Proc. 21st International Cartographic Conference (ICC '03).Google Scholar
  19. Steiniger, S. (2007). Enabling Pattern-Aware Automated Map Generalization. PhD thesis, University of Zürich.Google Scholar
  20. Steiniger, S., Burghardt, D., Lange, T., and Weibel, R. (2008). An Approach for the Classification of Urban Building Structures Based on Discriminant Analysis Techniques. Transactions in GIS, 12(1), 31–59.CrossRefGoogle Scholar
  21. Thomson, R. C. and Brooks, R. (2002). Exploiting Perceptual Grouping for Map Analysis, Understanding and Generalization: The Case of Road and River Networks. Pages 148–157 of: Proc. 4th International Workshop on Graphics Recognition Algorithms and Applications. Lecture Notes in Computer Science, vol. 2390. Springer.Google Scholar
  22. Werder, S., Kieler, B., and Sester, M. (2010). Semi-Automatic Interpretation of Buildings and Settlement Areas in User-Generated Spatial Data. In: Proc. 18th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACM GIS '10). To Appear.Google Scholar
  23. Wertheimer, M. (1938). Laws of Organization in Percetional Forms. Pages 71–88 of: A Source Book of Gestalt Psychology. Routledge & Kegan Paul.Google Scholar
  24. Wolter, J. D., Woo, T. C., and Volz, R. A. (1985). Optimal Algorithms for Symmetry Detection in two and three Dimensions. The Visual Computer, 1(1), 37–48.CrossRefGoogle Scholar
  25. Yan, H., Weibel, R., and Yang, B. (2008). A Multi-Parameter Approach to Automated Building Grouping and Generalization. GeoInformatica, 12(1), 73–89.CrossRefGoogle Scholar
  26. Yang, X., Adluru, N., Latecki, L. J., Bai, X., and Pizlo, Z. (2008). Symmetry of Shapes Via Self-Similarity. Pages 561–570 of: Proc. 4th International Symposium on Advances in Visual Computing, Part II. Lecture Notes In Computer Science, vol. 5359. Springer.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Chair of Computer Science IUniversity of WürzburgWürzburgGermany

Personalised recommendations