Driver-Centric VANET Simulation

  • Pedro Gomes
  • Cristina Olaverri-Monreal
  • Michel Ferreira
  • Luís Damas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6596)

Abstract

Inter-vehicle communication is becoming increasingly relevant in the research and development of novel, innovative vehicular applications. To support the driver in his/her primary driving task in an effective non distracting way, these applications need to be evaluated in a realistic context from a driver’s perspective of the VANET environment. In this paper we propose an innovative driver-centric simulation tool that integrates a VANET simulator with a driving simulator using communication technologies to relay information about the vehicle to the VANET environment and vice versa. The driver behavior is reflected in the VANET simulation system affecting the mobility of the cars in the vicinity and providing the intelligent driving model with new realistic features.

Keywords

Driving Simulation VANET Simulation VANET Applications Driving Model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Openscenegraph (2007), http://www.openscenegraph.org
  2. 2.
    Abdennour, A., Al-Ghamdi, A.: Artificial neural networks application to the estimation of vehicle headways in freeway sections. In: Proceedings of the 81st Transportation Research Board Annual Meeting, Washington, DC (2002)Google Scholar
  3. 3.
    Alm, T., Ohlsson, K., Kovordanyi, R.: Glass Cockpit Simulators: Tools for IT-based car systems design and evaluation. In: Proceedings of Driving Simulator Conference (2005)Google Scholar
  4. 4.
    Chu, K., Joseph, S.: Second Life Prototyping of Augmented Automobile Navigation Assistance. In: 11th International IEEE Conference on Intelligent Transportation Systems, ITSC 2008, pp. 389–394 (2008)Google Scholar
  5. 5.
    Coumans, E.: Bullet physics library (2009), http://www.bulletphysics.com
  6. 6.
    Dumbuya, A., Booth, A., Reed, N., Kirkham, A., Philpott, T., Zhao, J., Wood, R.: Complexity of Traffic Interactions: Improving Behavioural Intelligence in Driving Simulation Scenarios. Complex Systems and Self-organization Modelling, 201–209 (2009)Google Scholar
  7. 7.
    Dumbuya, A., Wood, R.: Visual perception modelling for intelligent virtual driver agents in synthetic driving simulation. Journal of Experimental & Theoretical Artificial Intelligence 15(1), 73–102 (2003)CrossRefMATHGoogle Scholar
  8. 8.
    Fernandes, R., D’Orey, P.M., Ferreira, M.: DIVERT for Realistic Simulation of Heterogeneous Vehicular Networks. In: 2nd IEEE International Workshop on Intelligent Vehicular Networks - InVeNET (2010)Google Scholar
  9. 9.
    Ferreira, M., Conceição, H., Fernandes, R., Tonguz, O.: Stereoscopic aerial photography: an alternative to model-based urban mobility approaches. In: Proceedings of the sixth ACM International Workshop on VehiculAr InterNETworking, pp. 53–62. ACM, New York (2009)CrossRefGoogle Scholar
  10. 10.
    Ferreira, M., Fernandes, R., Conceição, H., Viriyasitavat, W., Tonguz, O.K.: Self-Organized Traffic Control. In: 7th ACM International Workshop on Vehicular Inter-Networking-VANET (2010)Google Scholar
  11. 11.
    Karnadi, F., Mo, Z., Lan, K.: Rapid generation of realistic mobility models for vanet. In: IEEE Wireless Communications and Networking Conference, WCNC, pp. 2506–2511 (2007)Google Scholar
  12. 12.
    Mangharam, R., Weller, D., Stancil, D., Rajkumar, R., Parikh, J.: GrooveSim: a topography-accurate simulator for geographic routing in vehicular networks. In: Proceedings of the 2nd ACM International Workshop on Vehicular ad hoc Networks, p. 68. ACM, New York (2005)Google Scholar
  13. 13.
    Nielsen, J.: Usability inspection methods. In: Conference companion on Human Factors in Computing Systems, pp. 413–414. ACM, New York (1994)CrossRefGoogle Scholar
  14. 14.
    Olaverri-Monreal, C., Gomes, P., Fernandes, R., Vieira, F., Ferreira, M.: The See-Through System: A VANET-enabled assistant for overtaking maneuvers. In: Intelligent Vehicles Symposium (IV), pp. 123–128. IEEE, Los Alamitos (2010)Google Scholar
  15. 15.
    Piórkowski, M., Raya, M., Lugo, A.L., Papadimitratos, P., Grossglauser, M., Hubaux, J.P.: TraNS: realistic joint traffic and network simulator for VANETs. ACM SIGMOBILE Mobile Computing and Communications Review 12(1), 31–33 (2008)CrossRefGoogle Scholar
  16. 16.
    Sommer, C., Dressler, F.: Progressing toward realistic mobility models in VANET simulations. IEEE Communications Magazine 46(11), 132–137 (2008)CrossRefGoogle Scholar
  17. 17.
    Sommer, C., Yao, Z., German, R., Dressler, F.: On the need for bidirectional coupling of road traffic microsimulation and network simulation. In: Proceeding of the 1st ACM SIGMOBILE Workshop on Mobility Models, pp. 41–48. ACM, New York (2008)CrossRefGoogle Scholar
  18. 18.
    Treiber, M., Hennecke, A., Helbing, D.: Congested traffic states in empirical observations and microscopic simulations. Physical Review E 62(2), 1805–1824 (2000)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Pedro Gomes
    • 1
  • Cristina Olaverri-Monreal
    • 1
  • Michel Ferreira
    • 1
  • Luís Damas
    • 2
  1. 1.Instituto de Telecomunicações, Departamento de Ciência de ComputadoresFaculdade de Ciências da Universidade do PortoPortoPortugal
  2. 2.LIACC and Departamento de Ciência de ComputadoresFaculdade de Ciências da Universidade do PortoPortoPortugal

Personalised recommendations