Pistons Modelled by Potentials

Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 137)

Abstract

In this article we consider a piston modelled by a potential in the presence of extra dimensions. We analyze the functional determinant and the Casimir effect for this configuration. In order to compute the determinant and Casimir force we employ the zeta function scheme.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Bender. Advanced mathematical methods for scientists and engineers I: Asymptotic methods and perturbation theory. Springer, New York, 2010.Google Scholar
  2. 2.
    R.M. Cavalcanti. Casimir force on a piston. Phys. Rev., D69:065015, 2004.ADSGoogle Scholar
  3. 3.
    J. Conway. Functions of one Complex Variable. Springer-Verlag, New York, 1978.Google Scholar
  4. 4.
    E. Elizalde. Ten Physical Applications of Spectral Zeta Functions. Lecture Notes in Physics m35, Springer-Verlag, Berlin, 1995.Google Scholar
  5. 5.
    E. Elizalde, S.D. Odintsov, A. Romeo, A.A. Bytsenko, and S. Zerbini. Zeta Regularization Techniques with Applications. World Scientific, Singapore, 1994.Google Scholar
  6. 6.
    E. Elizalde, S.D. Odintsov, and A.A. Saharian. Repulsive Casimir effect from extra dimensions and Robin boundary conditions: from branes to pistons. Phys. Rev., D79:065023, 2009.MathSciNetADSGoogle Scholar
  7. 7.
    M.P. Hertzberg, R.L. Jaffe, M. Kardar, and A. Scardicchio. Attractive Casimir Forces in a Closed Geometry. Phys. Rev. Lett., 95:250402, 2005.MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    K. Kirsten. Spectral Functions in Mathematics and Physics. Chapman&Hall/CRC, Boca Raton, FL, 2002.Google Scholar
  9. 9.
    K. Kirsten and S.A. Fulling. Kaluza-Klein models as pistons. Phys. Rev., D79:065019, 2009.MathSciNetADSGoogle Scholar
  10. 10.
    K. Kirsten and A.J. McKane. Functional determinants by contour integration methods. Ann. Phys., 308:502–527, 2003.MathSciNetADSMATHCrossRefGoogle Scholar
  11. 11.
    K. Kirsten and A.J. McKane. Functional determinants for general Sturm-Liouville problems. J. Phys. A: Math. Gen., 37:4649–4670, 2004.MathSciNetADSMATHCrossRefGoogle Scholar
  12. 12.
    V. Marachevsky. Casimir interaction of two plates inside a cylinder. Phys. Rev., D75:085019, 2007.ADSGoogle Scholar
  13. 13.
    P.D. Miller. Applied asymptotic analysis. American Mathematical Society, Providence, Rhode Island, 2006.Google Scholar
  14. 14.
    K.A. Milton, J. Wagner, and K. Kirsten. Casimir Effect for a Semitransparent Wedge and an Annular Piston. Phys. Rev., D80:125028, 2009.ADSGoogle Scholar
  15. 15.
    L.P. Teo. Finite Temperature Casimir Effect in Kaluza-Klein Spacetime. Nucl. Phys., B819:431–452, 2009.ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of MathematicsBaylor UniversityWacoUSA

Personalised recommendations