Advertisement

Colliding Hadrons as Cosmic Membranes and Possible Signatures of Lost Momentum

  • Irina Ya. Aref’eva
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 137)

Abstract

We argue that in the TeV-gravity scenario high energy hadrons colliding on the 3-brane embedded in D = 4+n-dimensional spacetime, with n dimensions smaller than the hadron size, can be considered as cosmic membranes. In the 5- dimensional case these cosmic membranes produce effects similar to cosmic strings in the 4-dimensional world. We calculate the corrections to the eikonal approximation for the gravitational scattering of partons due to the presence of effective hadron cosmic membranes. Cosmic membranes dominate the momentum lost in the longitudinal direction for colliding particles that opens new channels for particle decays.

Keywords

Collide Hadron Cosmic String Black Hole Formation Large Impact Parameter Graviton Exchange 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali, Phys. Lett. B 429 (1998) 263, hepph/9803315; I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali, Phys. Lett. B 436 (1998) 257, hep-ph/9804398;Google Scholar
  2. 2.
    S. Dimopoulos and G. Landsberg, Phys. Rev. Lett. 87 (2001) 161602, hep-ph/0106295; S. B. Giddings and S. Thomas, Phys. Rev. D 65 (2002) 056010, hep-ph/0106219.Google Scholar
  3. 3.
    G. F. Giudice, R. Rattazzi and J. D. Wells, Nucl. Phys. B 544 (1999) 3, hep-ph/9811291.Google Scholar
  4. 4.
    G. F. Giudice, R. Rattazzi and J. D. Wells, Nucl. Phys. B 630 (2002) 293, hep-ph/0112161.Google Scholar
  5. 5.
    L. Lonnblad and M. Sjodahl, JHEP 0610 (2006) 088, hep-ph/0608210.Google Scholar
  6. 6.
    N. Boelaert and T. Akesson, Eur. Phys. J. C 66 (2010) 343, arXiv:0905.3961.Google Scholar
  7. 7.
    E. M. Sessolo and D. W. McKay, Phys. Lett. B 668 (2008) 396, arXiv:0803.3724.Google Scholar
  8. 8.
    P. Lodone and S. Rychkov, JHEP 0912 (2009) 036, arXiv:0909.3519.Google Scholar
  9. 9.
    J. L. Feng and A. D. Shapere, Phys. Rev. Lett. 88, 021303 (2002), hep-ph/0109106. L. Anchordoqui and H. Goldberg, Phys. Rev. D 65, 047502 (2002), hep-ph/0109242.Google Scholar
  10. 10.
    R. Emparan, Phys. Rev. D 64 (2001) 024025; R. Emparan, M. Masip and R. Rattazzi, Phys.Rev. D65 (2002) 064023, hep-ph/0109287.Google Scholar
  11. 11.
    T. Banks and W. Fischler, ”A model for high energy scattering in quantum gravity”, hepth/9906038.Google Scholar
  12. 12.
    I.Ya. Aref’eva, Part.Nucl.31 (2000) 169, hep-th/9910269.Google Scholar
  13. 13.
    D. M. Eardley and S. B. Giddings, Phys. Rev. D 66, 044011 (2002), gr-qc/0201034.Google Scholar
  14. 14.
    S. B. Giddings and V. S. Rychkov, Phys. Rev. D 70, 104026 (2004), hep-th/0409131; ibid. 436, 257 (1998), hep-ph/9804398Google Scholar
  15. 15.
    I.Ya. Aref’eva, Catalysis of Black Holes/Wormholes Formation in High Energy Collisions, arXiv:0912.5481Google Scholar
  16. 16.
    I. Y. Aref’eva and I. V. Volovich, Int. J. Geom. Meth. Mod. Phys. 05 (2008) 641, arXiv:0710.2696.Google Scholar
  17. 17.
    A. Mironov, A. Morozov and T. N. Tomaras, If LHC is a Mini-Time-Machines Factory, Can We Notice?, arXiv:0710.3395.Google Scholar
  18. 18.
    P. Nicolini and E. Spallucci, Noncommutative geometry inspired wormholes and dirty black holes, arXiv:0902.4654.Google Scholar
  19. 19.
    G. ’t Hooft, Phys. Lett. B 198, 61 (1987).Google Scholar
  20. 20.
    D. Amati, M. Ciafaloni and G. Veneziano, Phys. Lett. B 197, 81 (1987).ADSCrossRefGoogle Scholar
  21. 21.
    H. L. Verlinde and E. P. Verlinde, Nucl. Phys. B 371, 246 (1992), hep-th/9110017.Google Scholar
  22. 22.
    D. N. Kabat and M. Ortiz, Nucl. Phys. B 388, 570 (1992), hep-th/9203082.Google Scholar
  23. 23.
    D. Amati, M. Ciafaloni and G. Veneziano, Int. J. Mod. Phys. A 3, 1615 (1988), Nucl. Phys. B 347, 550 (1990).Google Scholar
  24. 24.
    D. Amati, M. Ciafaloni and G. Veneziano, Phys. Lett. B 289, 87 (1992), JHEP 0802, 049 (2008), arXiv:0712.1209.Google Scholar
  25. 25.
    I. Ya. Aref’eva, K. S. Viswanathan and I. V. Volovich, Nucl. Phys. B 452, 346 (1995).Google Scholar
  26. 26.
    M. Ciafaloni and D. Colferai, JHEP 0811, 047 (2008), arXiv:0807.2117.Google Scholar
  27. 27.
    L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999), hep-th/9906064.Google Scholar
  28. 28.
    G. R. Dvali, G. Gabadadze and M. Porrati, Phys. Lett. B 485, 208 (2000), hep-th/0005016.Google Scholar
  29. 29.
    I.Ya. Aref’eva, Phys.Lett., B 325 (1994) 171, hep-th/9311115.Google Scholar
  30. 30.
    L.N. Lipatov, JETP Lett. 59 (1994) 596; R. Kirschner, L. N. Lipatov and L. Szymanowski, Nucl. Phys. B 425, 579 (1994), hep-th/9402010.Google Scholar
  31. 31.
    A. Vilenkin, Phys. Rep. 121, 263 (1985).MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    O. Pujolas, JHEP 0812, 057 (2008), arXiv:0809.0005.Google Scholar
  33. 33.
    I.Ya. Aref’eva and A.A.Bagrov, in preparation.Google Scholar
  34. 34.
    M. Levy and J. Sucher, Phys. Rev. 186 (1969) 1656.MathSciNetADSCrossRefGoogle Scholar
  35. 35.
    B.M.Barbashev, S.P.Kuleshev, V.A.Marveev and A.N.Sissakian, Theor.Math.Phys., 3 (1970) 342.CrossRefGoogle Scholar
  36. 36.
    S. Deser and R. Jackiw, G. t Hooft, Ann. of Phys., NY., 152 (1984) 220.Google Scholar
  37. 37.
    J.S. Dowker, J.Phys. A10 (1977) 115MathSciNetADSGoogle Scholar
  38. 38.
    S. Deser and R. Jackiw, Commun. Math. Phys. 118 (1988) 495.MathSciNetADSzbMATHCrossRefGoogle Scholar
  39. 39.
    G. ’t Hooft, Comm. Math. Phys, 117 (1988) 685.Google Scholar
  40. 40.
    B. Linet, Phys.Rev, 33 (1986) 1833.ADSGoogle Scholar
  41. 41.
    V. P. Frolov, E. M. Serebryanyi and V. D. Skarzhinsky, “On the electrodynamical effects in the gravitational field of a cosmic string,” in ”Proceedings of quantum gravity conference”, Moscow, (1987) 830.Google Scholar
  42. 42.
    A.N. Aliev, D.V. Galtsov, Zh.Eksp.Teor.Fiz. 96 (1989) 3.Google Scholar
  43. 43.
    Y. Aharonov and D. Bohm, Phys. Rev., 119 (1959) 485.MathSciNetADSCrossRefGoogle Scholar
  44. 44.
    V.D. Skarzhinsky, D.D. Harari, and U. Jasper, Phys. Rev. D 49 (1994) 755.ADSCrossRefGoogle Scholar
  45. 45.
    J. Audretsch, U. Jasper and V. D. Skarzhinsky, Phys. Rev. D 49 (1994) 6576ADSCrossRefGoogle Scholar
  46. 46.
    M. Henneaux, Phys.Rev.D 29 (1984) 2766.Google Scholar
  47. 47.
    J. Audretsch, U. Jasper and V. D. Skarzhinsky, Phys. Rev. D 49 (1994) 6576.ADSCrossRefGoogle Scholar
  48. 48.
    S. Deser, Class.Quant.Gr., 2 (1985) 489.Google Scholar
  49. 49.
    D. Deutsch and P. Candelas, Phys. Rev. D 20 (1979) 3063.MathSciNetADSCrossRefGoogle Scholar
  50. 50.
    T.H. Helliwell and D.A. Konkowski, Phys. Rev. D 34 (1986) 1918.ADSCrossRefGoogle Scholar
  51. 51.
    G.Cognola, K.Kirsten, L. Vanzo, Phys. Rev. D 49 (1994) 1029.MathSciNetADSCrossRefGoogle Scholar
  52. 52.
    E. Elizalde, S. D. Odintsov, A. Romeo, A. A. Bytsenko, and S. Zerbini, Zeta regularization techniques with applications, World Scientific Publishing Co. Inc., River Edge, NJ, 1994.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Irina Ya. Aref’eva
    • 1
  1. 1.Steklov Mathematical Institute, Russian Academy of SciencesMoscowRussia

Personalised recommendations