Improved Approximation Algorithms for the Max-Edge Coloring Problem

  • Giorgio Lucarelli
  • Ioannis Milis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6595)


The max edge-coloring problem asks for a proper edge-coloring of an edge-weighted graph minimizing the sum of the weights of the heaviest edge in each color class. In this paper we present a PTAS for trees and an 1.74-approximation algorithm for bipartite graphs; we also adapt the last algorithm to one for general graphs of the same, asymptotically, approximation ratio. Up to now, no approximation algorithm of ratio 2 − δ, for any constant δ> 0, was known for general or bipartite graphs, while the complexity of the problem on trees remains an open question.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anstee, R.P.: An algorithmic proof of Tutte’s f-factor theorem. Journal of Algorithms 6, 112–131 (1985)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bourgeois, N., Lucarelli, G., Milis, I., Paschos, V.T.: Approximating the max-edge-coloring problem. Theoretical Computer Science 411, 3055–3067 (2010)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    de Werra, D., Demange, M., Escoffier, B., Monnot, J., Paschos, V.T.: Weighted coloring on planar, bipartite and split graphs: Complexity and approximation. Discrete Applied Mathematics 157, 819–832 (2009)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    de Werra, D., Hoffman, A.J., Mahadev, N.V.R., Peled, U.N.: Restrictions and preassignments in preemptive open shop scheduling. Discrete Applied Mathematics 68, 169–188 (1996)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Demange, M., de Werra, D., Monnot, J., Paschos, V.T.: Time slot scheduling of compatible jobs. Journal of Scheduling 10, 111–127 (2007)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Epstein, L., Levin, A.: On the max coloring problem. In: Kaklamanis, C., Skutella, M. (eds.) WAOA 2007. LNCS, vol. 4927, pp. 142–155. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Escoffier, B., Monnot, J., Paschos, V.T.: Weighted coloring: further complexity and approximability results. Information Processing Letters 97, 98–103 (2006)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Finke, G., Jost, V., Queyranne, M., Sebő, A.: Batch processing with interval graph compatibilities between tasks. Discrete Applied Mathematics 156, 556–568 (2008)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Gabow, H.N., Nishizeki, T., Kariv, O., Leven, D., Terada, O.: Algorithms for edge-coloring graphs. Technical Report TRECIS-8501, Tohoku University (1985)Google Scholar
  10. 10.
    Gopal, I.S., Wong, C.: Minimizing the number of switchings in a SS/TDMA system. IEEE Transactions On Communications 33, 497–501 (1985)CrossRefGoogle Scholar
  11. 11.
    Halldorsson, M.M., Shachnai, H.: Batch coloring flat graphs and thin. In: Gudmundsson, J. (ed.) SWAT 2008. LNCS, vol. 5124, pp. 198–209. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Holyer, I.: The NP-completeness of edge-coloring. SIAM Journal on Computing 10, 718–720 (1981)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Kavitha, T., Mestre, J.: Max-coloring paths: Tight bounds and extensions. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 87–96. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Kesselman, A., Kogan, K.: Nonpreemptive scheduling of optical switches. IEEE Transactions on Communications 55, 1212–1219 (2007)CrossRefGoogle Scholar
  15. 15.
    König, D.: Über graphen und ihre anwendung auf determinantentheorie und mengenlehre. Mathematische Annalen 77, 453–465 (1916)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Kubale, M.: Some results concerning the complexity of restricted colorings of graphs. Discrete Applied Mathematics 36, 35–46 (1992)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Lucarelli, G., Milis, I., Paschos, V.T.: On the max-weight edge coloring problem. Journal of Combinatorial Optimization 20, 429–442 (2010)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Pemmaraju, S.V., Raman, R.: Approximation algorithms for the max-coloring problem. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1064–1075. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Pemmaraju, S.V., Raman, R., Varadarajan, K.R.: Buffer minimization using max-coloring. In: 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2004), pp. 562–571 (2004)Google Scholar
  20. 20.
    Vizing, V.G.: On an estimate of the chromatic class of a p-graph. Diskret. Analiz. 3, 25–30 (1964)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Giorgio Lucarelli
    • 1
  • Ioannis Milis
    • 2
  1. 1.LAMSADEUniversité Paris-Dauphine and CNRSFrance
  2. 2.Department of InformaticsAthens University of Economics and BusinessGreece

Personalised recommendations