Advertisement

Refining Dynamics of Gene Regulatory Networks in a Stochastic π-Calculus Framework

  • Loïc Paulevé
  • Morgan Magnin
  • Olivier Roux
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6575)

Abstract

In this paper, we introduce a framework allowing to model and analyse efficiently Gene Regulatory Networks (GRNs) in their temporal and stochastic aspects. The analysis of stable states and inference of René Thomas’ discrete parameters derives from this logical formalism. We offer a compositional approach which comes with a natural translation to the Stochastic π-Calculus. The method we propose consists in successive refinements of generalised dynamics of GRNs. We illustrate the merits and scalability of our framework on the control of the differentiation in a GRN generalising metazoan segmentation processes, and on the analysis of stable states within a large GRN studied in the scope of breast cancer researches.

Keywords

Stable State Gene Regulatory Network State Graph Process Algebra Stochastic Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Richard, A., Comet, J.P., Bernot, G.: Formal Methods for Modeling Biological Regulatory Networks. In: Modern Formal Methods and Applications, pp. 83–122 (2006)Google Scholar
  2. 2.
    Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Rule-Based Modelling of Cellular Signalling. In: Caires, L., Li, L. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 17–41. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Priami, C., Regev, A., Shapiro, E., Silverman, W.: Application of a stochastic name-passing calculus to representation and simulation of molecular processes. Inf. Process. Lett. 80(1), 25–31 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Kuttler, C., Niehren, J.: Gene regulation in the pi calculus: Simulating cooperativity at the lambda switch. In: Priami, C., Ingólfsdóttir, A., Mishra, B., Riis Nielson, H. (eds.) Transactions on Computational Systems Biology VII. LNCS (LNBI), vol. 4230, pp. 24–55. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Blossey, R., Cardelli, L., Phillips, A.: A compositional approach to the stochastic dynamics of gene networks. In: Priami, C., Cardelli, L., Emmott, S. (eds.) Transactions on Computational Systems Biology IV. LNCS (LNBI), vol. 3939, pp. 99–122. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Popova-Zeugmann, L., Heiner, M., Koch, I.: Time petri nets for modelling and analysis of biochemical networks. Fundamenta Informaticae 67(1), 149–162 (2005)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Heiner, M., Gilbert, D., Donaldson, R.: Petri Nets for Systems and Synthetic Biology. In: Formal Methods for Computational Systems Biology, pp. 215–264 (2008)Google Scholar
  8. 8.
    Rizk, A., Batt, G., Fages, F., Soliman, S.: On a Continuous Degree of Satisfaction of Temporal Logic Formulae with Applications to Systems Biology. In: Computational Methods in Systems Biology, pp. 251–268 (2008)Google Scholar
  9. 9.
    Siebert, H., Bockmayr, A.: Incorporating Time Delays into the Logical Analysis of Gene Regulatory Networks. In: Computational Methods in Systems Biology, pp. 169–183 (2006)Google Scholar
  10. 10.
    Alur, R., Belta, C., Kumar, V., Mintz, M., Pappas, G.J., Rubin, H., Schug, J.: Modeling and analyzing biomolecular networks. Computing in Science and Engineering 4(1), 20–31 (2002)CrossRefGoogle Scholar
  11. 11.
    Ahmad, J., Bernot, G., Comet, J.P., Lime, D., Roux, O.: Hybrid modelling and dynamical analysis of gene regulatory networks with delays. Complexus 3(4), 231–251 (2006)CrossRefGoogle Scholar
  12. 12.
    Phillips, A., Cardelli, L.: Efficient, correct simulation of biological processes in the stochastic pi-calculus. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS (LNBI), vol. 4695, pp. 184–199. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Dematte, L., Priami, C., Romanel, A.: The Beta Workbench: a computational tool to study the dynamics of biological systems. Brief Bioinform., bbn023 (2008)Google Scholar
  14. 14.
    Ciocchetta, F., Hillston, J.: Bio-pepa: A framework for the modelling and analysis of biological systems. Theoretical Computer Science 410(33-34), 3065–3084 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for automatic verification of probabilistic systems. In: Hermanns, H. (ed.) TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Norman, G., Palamidessi, C., Parker, D., Wu, P.: Model checking probabilistic and stochastic extensions of the π-calculus. IEEE Transactions on Software Engineering 35(2), 209–223 (2009)CrossRefGoogle Scholar
  17. 17.
    Bernot, G., Cassez, F., Comet, J.P., Delaplace, F., Müller, C., Roux, O.: Semantics of biological regulatory networks. Electronic Notes in Theoretical Computer Science 180(3), 3–14 (2007)CrossRefGoogle Scholar
  18. 18.
    Milner, R.: A calculus of mobile processes, parts. I and II. Information and Computation 100, 1–77 (1992)CrossRefzbMATHGoogle Scholar
  19. 19.
    Bernot, G., Comet, J.P., Khalis, Z.: Gene regulatory networks with multiplexes. In: European Simulation and Modelling Conference Proceedings, pp. 423–432 (October 2008)Google Scholar
  20. 20.
    Priami, C.: Stochastic π-Calculus. The Computer Journal 38(7), 578–589 (1995)CrossRefGoogle Scholar
  21. 21.
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry 81(25), 2340–2361 (1977)CrossRefGoogle Scholar
  22. 22.
    Priami, C.: Stochastic π-calculus with general distributions. In: Proc. of the 4th Workshop on Process Algebras and Performance Modelling, CLUT, pp. 41–57 (1996)Google Scholar
  23. 23.
    Francois, P., Hakim, V., Siggia, E.D.: Deriving structure from evolution: metazoan segmentation. Mol. Syst. Biol. 3 (2007)Google Scholar
  24. 24.
  25. 25.
    Sahin, O., Frohlich, H., Lobke, C., Korf, U., Burmester, S., Majety, M., Mattern, J., Schupp, I., Chaouiya, C., Thieffry, D., Poustka, A., Wiemann, S., Beissbarth, T., Arlt, D.: Modeling ERBB receptor-regulated G1/S transition to find novel targets for de novo trastuzumab resistance. BMC Systems Biology 3(1) (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Loïc Paulevé
    • 1
  • Morgan Magnin
    • 1
  • Olivier Roux
    • 1
  1. 1.IRCCyN, UMR CNRS 6597École Centrale de NantesFrance

Personalised recommendations