Spatial OnLine Analytical Processing of Geographic Data through the Google Earth Interface

  • Sergio Di Martino
  • Sandro Bimonte
  • Michela Bertolotto
  • Filomena Ferrucci
  • Vincenza Leano
Part of the Studies in Computational Intelligence book series (SCI, volume 348)

Abstract

OnLine Analytical Processing (OLAP) tools act as support systems for Decision Makers to discover new knowledge hidden within data warehouses. In the spatial domain this capability is crucial. However, notwithstanding the pressing need for Spatial OLAP (SOLAP) tools, only very few are currently available. Such tools present several limitations in terms of their flexibility in the functionality and the analytical properties they provide.  To overcome these limitations, we have developed a web-based SOLAP tool, which relies on the integration of a standard Geobrowser (Google Earth) with a freely available OLAP engine, namely Mondrian. Our system allows a Decision Maker to perform exploration and analysis of spatial data both through the Geobrowser and a Pivot Table in a seamlessly fashion. In this paper, we illustrate the main features of the system we have developed, together with the underlying architecture, using a simulated case study.

Keywords

Spatial OLAP Spatial Data Warehouses Geovisualizaiton Geobrowser 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anselin, L.: What Is Special about Spatial Data? Alternative Perspectives on Spatial. Data Analysis, Technical Report 89-94, National Center for Geographic Information and Analysis, Santa Barbara, CA (1989)Google Scholar
  2. Andrienko, N., Andrienko, G., Jankowski, P., et al.: Geovisual analytics for spatial decision support: Setting the research agenda. Int. J. Geographical Inf. Sci. 21(8), 839–857 (2007)CrossRefGoogle Scholar
  3. Andrienko, N., Andrienko, G., Wrobel, S.: Visual analytics tools for analysis of movement data. SIGKDD Explor. 9(2), 38–46 (2007)CrossRefGoogle Scholar
  4. Bédard, Y.: Spatial OLAP. In: Proc. of 2nd Forum annuel sur la R-D, Géomatique VI: Un monde accessible, Montréal, Canada, November 13-14 (1997)Google Scholar
  5. Bédard, Y., Merrett, T., Han, J.: Fundaments of Spatial Data Warehousing for Geographic Knowledge Discovery. In: Geographic Data Mining and Knowledge Discovery. Taylor & Francis, London (2001)Google Scholar
  6. Bédard, Y., Proulx, M., Rivest, S.: Enrichissement du OLAP pour l’analyse géographique: exemples de réalisation et différentes possibilités technologiques. R. Nouvelles Tech. de l’Inf., Entrepôts de données et l’Analyse enligne, 1–20 (2005)Google Scholar
  7. Bédard, Y., Proulx, M., Rivest, S., et al.: Merging Hypermedia GIS with Spatial On-Line Analytical Processing: Towards Hypermedia SOLAP. In: Geographic Hypermedia: Concepts and Systems. Springer, Berlin (2006)Google Scholar
  8. Bertin, J., Bonin, S.: La graphique et le traitement graphique de l’information. Flammarion, Paris (1992)Google Scholar
  9. Bleisch, S., Nebiker, S.: Connected 2D and 3D visualizations for the interactive exploration of spatial information. In: Proc. of 21th ISPRS Congress, Beijing, China (2008)Google Scholar
  10. Bimonte, S.: On Modelling and Analysis of Geographic Multidimensional Databases. In: Data Warehousing Design and Advanced Engineering Applications: Methods for Complex Construction. Idea Group Publishing, Hershey (2008)Google Scholar
  11. Bimonte, S.: Des entrepôts de données, l’analyse en ligne et l’information géographique. J. of Decis. Syst. 17(4), 463–486Google Scholar
  12. Bimonte, S., Tchounikine, A., Miquel, M.: Spatial OLAP: Open Issues and a Web Based Prototype. In: Proc. of 10th AGILE International Conference on Geographic Information Science, Aalborg, Denmark, May 8-11 (2007)Google Scholar
  13. Compieta, P., Di Martino, S., Bertolotto, M., et al.: Exploratory spatio-temporal data mining and visualization. J. Vis. Lang. and Comp. 18(3), 255–272 (2007)CrossRefGoogle Scholar
  14. Caron, P.: Étude du potentiel de OLAP pour supporter l’analyse spatio-temporelle. Université Laval, Laval (1998)Google Scholar
  15. Escribano, A., Gomez, L., Kuijpers, B., et al.: Piet: a GIS-OLAP implementation. In: Proc. of the ACM 10th International Workshop on Data Warehousing and OLAP, pp. 73–80. ACM Press, New York (2007)CrossRefGoogle Scholar
  16. Franklin, C.: An Introduction to Geographic Information Systems: Linking Maps to databases. In: Database (1992)Google Scholar
  17. Girardin, F., Calabrese, F., Dal Fiore, F., et al.: Digital footprinting: Uncovering tourists with user-generated content. IEEE Pervasive Comp. 7(4), 36–43 (2008)CrossRefGoogle Scholar
  18. Goodchild, M., Densham, P.: Spatial Decision Support Systems. Scientific Report for the Specialist Meeting, TR-90-5. National Center for Geographic Information and Analysis, Santa Barbara, California, USA (1990)Google Scholar
  19. Hägerstrand, T.: What About People in Regional Science? Regional Science Association 24, 7–21 (1970)Google Scholar
  20. Hernandez, V., Voss, A., Göhring, W., et al.: Sustainable decision support by the use of multi-level and multi-criteria spatial analysis on the Nicaragua Development Gateway. In: Proc. of From pharaohs to geoinformatics Proceedings of FIG Working Week 2005 and 8th International Conference on the Global Spatial Data Infrastructure, Le Caire, Egypte (2005)Google Scholar
  21. Inmon, W.: Building the Data Warehouse. Wiley, New York (1996)Google Scholar
  22. JPivot, The JPivot Project web site (2008), http://jpivot.sourceforge.net/ (last visited on December 07, 2008)
  23. KML, The KML file format specifications (2008), http://code.google.com/intl/en/apis/kml/documentation/ (last visited on December 07, 2008)
  24. Keim, D., Mansmann, F., Schneidewind, J., et al.: Challenges in Visual Data Analysis. In: Proc. of Information Visualization Symposium, pp. 9–16. IEEE, New York (2006)Google Scholar
  25. Longley, P., Goodchild, M., Maguire, D., Rhind, D.: Geographic Information Systems and Science. John Wiley & Sons, New York (2001)Google Scholar
  26. MacEachren, A., Kraak, M.: Research challenges in geovisualization, Cartography and Geographic. Inf. Syst. 6(1), 3–12 (2001)Google Scholar
  27. MacEachren, A., Gahegan, M., Pike, W., et al.: Geovisualization for Knowledge Construction and Decision Support. IEEE Comput. graphics and appl. 24(1), 13–17 (2004)CrossRefGoogle Scholar
  28. Malinowski, E., Zimányi, E.: Logical Representation of a Conceptual Model for Spatial Data Warehouses. In: Geoinformatica. Springer, Berlin (2007)Google Scholar
  29. Mitchell, A.: The ESRI Guide to GIS Analysis. Spatial Measurements and Statistics, vol. 2. ESRI Press, Redlands (2005)Google Scholar
  30. Mondrian, The Mondrian Project web site (2008), http://mondrian.pentaho.org/ (last visited on December 07, 2008)
  31. Pérez, J., Lavori, R., Cabo, M., et al.: R-Cubes: OLAP Cubes Contextualized with Documents. In: Proc. of International Conference on Data Engineering, pp. 1477–1478. IEEE, New York (2007)Google Scholar
  32. Rafanelli, M.: Operators for Multidimensional Aggregate Data. In: Multidimensional databases: problems and solutions. IGI Publishing, Hershey (2003)Google Scholar
  33. Rivest, S., Bédard, Y., Marchand, P.: Towards better support for spatial decision-making: defining the characteristics of Spatial On-Line Analytical Processing. J. of the Canadian Inst. of Geomatics 55(4), 539–555 (2001)Google Scholar
  34. Rivest, S., Bédard, Y., Proulx, M., et al.: SOLAP: Merging Business Intelligence with Technology for Interactive Spatio-Temporal Exploration and Analysis of Data. J. Int. Soc. for Photogrammetry and Remote Sensing 60(1), 17–33 (2005)CrossRefGoogle Scholar
  35. Scotch, M., Parmanto, B.: Development of SOVAT: a numerical-spatial decision support system for community health assessment research. Int. J. Med. Infor. 34(10), 771–784 (2006)CrossRefGoogle Scholar
  36. Shneiderman, B.: The eyes have it: A task by data type taxonomy for information visualizations. In: Proc. of IEEE Symposium on Visual Languages. IEEE, New York (1996)Google Scholar
  37. Slingsby, A., Dykes, J., Wood, J., et al.: The Visual Exploration of Insurance Data in Google Earth. In: Proc. of Geographical Information Systems Research, UK, Manchester, pp. 24–32 (2007)Google Scholar
  38. Stolte, C., Tang, D., Hanrahan, P.: Polaris: A System for Query, Analysis and Visualization of Multi-dimensional Relational Databases. IEEE Trans. on Vis. and Comp. Graphics 8(1), 52–65 (2002)CrossRefGoogle Scholar
  39. Tobler, W.: A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 46, 234–240 (1970)CrossRefGoogle Scholar
  40. Zhe-Ping, S.: Geovisualization of Disaster Potential Evaluation on Hillside Areas Around Taipei. In: Proc. of Asian Association of Remote Sensing (2007)Google Scholar
  41. Wood, J., Dykes, J., Slingsby, A., et al.: Interactive visual exploration of a large spatio-temporal data set: reflections on a geovisualization mashup. IEEE Trans. on Vis. and Comp. Graphics 13(6), 1176–1183 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Sergio Di Martino
    • 1
  • Sandro Bimonte
    • 2
  • Michela Bertolotto
    • 3
  • Filomena Ferrucci
    • 4
  • Vincenza Leano
    • 1
  1. 1.University of Naples “Federico II”NapoliItaly
  2. 2.Cemagref, UR TSCFClermont-FerrandFrance
  3. 3.University College DublinDublin 4Ireland
  4. 4.University of SalernoFiscianoItaly

Personalised recommendations