Convergent Iterative Feedback Tuning of State Feedback-Controlled Servo Systems

  • Mircea-Bogdan Rădac
  • Radu-Emil Precup
  • Emil M. Petriu
  • Stefan Preitl
  • Claudia-Adina Dragoş
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 85)


This paper presents a new Iterative Feedback Tuning (IFT)-based optimal state feedback control solution dedicated to a class of second-order servo systems with integral component. The state feedback controllers for these controlled plants are extended with an integrator to ensure the rejection of constant load type disturbances. Original IFT algorithms are suggested for the accepted state feedback controllers such that to set the step size in order to guarantee the convergence. An attractive convergence theorem based on the application of Popov’s hypertability theory to the parameter update law in the IFT algorithms is offered. The theoretical results are validated by a case study concerning the position control of a DC servo system with backlash. Implementation issues are discussed and exemplified by real-time experimental results.


Implementation Issues Iterative Feedback Tuning Second-order Servo Systems Real-time Experimental Results 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blažič, S., Škrjanc, I.: Design and Stability Analysis of Fuzzy Model-Based Predictive Control - A Case Study. J. Intell. Robot. Syst. 49, 279–292 (2007)CrossRefGoogle Scholar
  2. 2.
    Petres, Z., Baranyi, P., Korondi, P., Hashimoto, H.: Trajectory Tracking by TP Model Transformation: Case Study of a Benchmark Problem. IEEE Trans. Ind. Electron. 54, 1654–1663 (2007)CrossRefGoogle Scholar
  3. 3.
    Vaščák, J.: Navigation of Mobile Robots Using Potential Fields and Computational Intelligence Means. Acta Polytech. Hung. 4, 63–74 (2007)Google Scholar
  4. 4.
    Orlowska-Kowalska, T., Szabat, K.: Damping of Torsional Vibrations in Two-Mass System Using Adaptive Sliding Neuro-Fuzzy Approach. IEEE Trans Ind. Informat. 4, 47–57 (2008)CrossRefGoogle Scholar
  5. 5.
    Barut, M., Bogosyan, S., Gokasan, M.: Experimental Evaluation of Braided EKF for Sensorless Control of Induction Motors. IEEE Trans. Ind. Electron. 55, 620–632 (2008)CrossRefGoogle Scholar
  6. 6.
    Baranyi, P., Korondi, P., Tanaka, K.: Parallel Distributed Compensation Based Stabilization of a 3-DOF RC Helicopter: A Tensor Product Transformation Based Approach. J. Adv. Comput. Intell. Intell. Inform. 13, 25–34 (2009)Google Scholar
  7. 7.
    Klančar, G., Matko, D., Blažič, S.: Wheeled Mobile Robots Control in a Linear Platoon. J. Intell. Robot. Syst. 54, 709–731 (2009)CrossRefGoogle Scholar
  8. 8.
    Hladek, D., Vaščák, J., Sinčák, P.: Multi-Robot Control System for Pursuit-Evasion problem. J. Electr. Eng. 60, 143–148 (2009)Google Scholar
  9. 9.
    Åström, K.J., Hägglund, T.: Benchmark Systems for PID Control. In: IFAC PID 2000 Workshop, Terrassa, Spain, pp. 181–182 (2000)Google Scholar
  10. 10.
    Isermann, R.: Mechatronic Systems: Fundamentals. Springer, Heidelberg (2003)Google Scholar
  11. 11.
    Horváth, L., Rudas, I.J.: Modeling and Problem Solving Methods for Engineers. Academic Press, Elsevier, Burlington, MA (2004)Google Scholar
  12. 12.
    Hjalmarsson, H., Gunnarsson, S., Gevers, M.: A Convergent Iterative Restricted Complexity Control Design Scheme. In: 33rd IEEE Conference on Decision and Control, Lake Buena Vista, FL, pp. 1735–1740 (1994)Google Scholar
  13. 13.
    Hjalmarsson, H., Gevers, M., Gunnarsson, S., Lequin, O.: Iterative Feedback Tuning: Theory and Applications. IEEE Control Syst. Mag. 18, 26–41 (1998)CrossRefGoogle Scholar
  14. 14.
    Huusom, J.K., Poulsen, N.K., Jørgensen, S.B.: Improving Convergence of Iterative Feedback Tuning. J. Process Control 19, 570–578 (2009)CrossRefGoogle Scholar
  15. 15.
    Hjalmarsson, H., Birkeland, T.: Iterative Feedback Tuning of Linear Time-Invariant MIMO Systems. In: 37th IEEE Conference on Decision and Control CDC, Tampa, FL, pp. 3893–3898 (1998)Google Scholar
  16. 16.
    Hjalmarsson, H.: Efficient Tuning of Linear Multivariable Controllers Using Iterative Feedback Tuning. Int. J. Adapt. Control Signal Process. 13, 553–572 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Jansson, H., Hjalmarsson, H.: Gradient Approximations in Iterative Feedback Tuning for Multivariable Processes. Int. J. Adapt. Control Signal Process. 18, 665–681 (2004)CrossRefzbMATHGoogle Scholar
  18. 18.
    Huusom, J.K., Poulsen, N.K., Jørgensen, S.B.: Data Driven Tuning of State Space Control Loops with Unknown State Information and Model Uncertainty. Comput. Aided Chem. Eng. 26, 441–446 (2009)CrossRefGoogle Scholar
  19. 19.
    Kissling, S., Blanc, P., Myszkorowski, P., Vaclavik, I.: Application of Iterative Feedback Tuning (IFT) to Speed and Position Control of a Servo Drive. Control Eng. Pract. 17, 834–840 (2009)CrossRefGoogle Scholar
  20. 20.
    Rădac, M.-B., Precup, R.-E., Petriu, E.M., Preitl, S., Dragoş, C.-A.: Iterative Feedback Tuning Approach to a Class of State Feedback-Controlled Servo Systems. In: 6th International Conference on Informatics in Control, Automation and Robotics ICINCO 2009, Milan, Italy, vol. 1, pp. 41–48 (2009)Google Scholar
  21. 21.
    Popov, V.M.: Hyperstability of Automatic Control Systems. Springer, New York (1973)Google Scholar
  22. 22.
    Landau, Y.-D.: Adaptive Control: The Model Reference Approach. Marcel Dekker, New York (1979)zbMATHGoogle Scholar
  23. 23.
    Precup, R.-E., Preitl, S., Rudas, I.J., Tomescu, M.L., Tar, J.K.: Design and Experiments for a Class of Fuzzy Controlled Servo Systems. IEEE/ASME Trans. Mechatronics 13, 22–35 (2008)CrossRefGoogle Scholar
  24. 24.
    Precup, R.-E., Preitl, S., Tar, J.K., Tomescu, M.L., Takács, M., Korondi, P., Baranyi, P.: Fuzzy Control System Performance Enhancement by Iterative Learning Control. IEEE Trans. Ind. Electron. 55, 3461–3475 (2008)CrossRefGoogle Scholar
  25. 25.
    Eckhard, D., Bazanella, A.S.: Optimizing the Convergence of Data-Based Controller Tuning. In: European Control Conference ECC 2009, Budapest, Hungary, pp. 910–915 (2009)Google Scholar
  26. 26.
    Savaresi, S.M., Tanelli, M., Taroni, F., Previdi, F., Bittanti, S., Prandoni, V.: Analysis and Design of an Automatic Motion-Inverter. IEEE/ASME Trans. Mechatronics 11, 346–357 (2006)CrossRefGoogle Scholar
  27. 27.
    Johanyák, Z.C., Kovács, S.: A Brief Survey and Comparison on Various Interpolation Based Fuzzy Reasoning Methods. Acta Polytech. Hung. 3, 91–105 (2006)Google Scholar
  28. 28.
    Johanyák, Z.C., Tikk, D., Kovács, S., Wong, K.K.: Fuzzy Rule Interpolation Matlab Toolbox - FRI Toolbox. In: 15th International Conference on Fuzzy Systems FUZZ-IEEE 2006, Vancouver, BC, Canada, pp. 1427–1433 (2006)Google Scholar
  29. 29.
    Barai, R.K., Nonami, K.: Optimal Two-Degree-of-Freedom Fuzzy Control for Locomotion Control of a Hydraulically Actuated Hexapod Robot. Inf. Sci. 177, 1892–1915 (2007)CrossRefGoogle Scholar
  30. 30.
    Hwang, C.-L.: Microprocessor-Based Fuzzy Decentralized Control of 2-D Piezo-Driven Systems. IEEE Trans. Ind. Electron. 55, 1411–1420 (2008)CrossRefGoogle Scholar
  31. 31.
    Wu, M., Yan, J., She, J.-H., Cao, W.-H.: Intelligent Decoupling Control of Gas Collection Process of Multiple Asymmetric Coke Ovens. IEEE Trans. Ind. Electron. 56, 2782–2792 (2009)CrossRefGoogle Scholar
  32. 32.
    Ahn, H.K., Anh, H.P.H.: Inverse Double NARX Fuzzy Modeling for System Identification. IEEE/ASME Trans. Mechatronics 15, 136–148 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mircea-Bogdan Rădac
    • 1
  • Radu-Emil Precup
    • 1
  • Emil M. Petriu
    • 2
  • Stefan Preitl
    • 1
  • Claudia-Adina Dragoş
    • 1
  1. 1.Dept. of Automation and Applied Informatics“Politehnica” University of TimisoaraTimisoaraRomania
  2. 2.School of Information Technology and EngineeringUniversity of OttawaOttawaCanada

Personalised recommendations