Interdisciplinary Modeling of Autonomous Systems Deployed in Uncertain Dynamic Environments

  • Manuela L. Bujorianu
  • Marius C. Bujorianu
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 85)


The autonomous systems that operate in physical, random and highly dynamical environments involve a large amount of computation, which depends on the number of parameters. We tackle the problem of complexity reduction for these systems based on an interdisciplinary and qualitative approach. We define concepts like qualitative model reduction and adaptive bismulation, and use them to investigate the stochastic model checking. These concepts prove to be very useful in capturing the co-evolution between system and its environment. Potential applications in renewable energies are discussed.


Autonomous systems Uncertain cyber-physical systems Adaptive bisimulation System environment co-evolution Stochastic model checking Renewable energy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albeverio, S., Ma, Z.M., Rockner, M.: Quasi-regular Dirichlet Forms and Markov Processes. J. of Functional Analysis 111, 118–154 (1993)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Bect, J., Phulpin, Y., Baili, H., Fleury, G.: On the Fokker-Planck equation for stochastic hybrid systems: application to a wind turbine model (2006)Google Scholar
  3. 3.
    Bujorianu, M.C., Bujorianu, M.L.: A Randomized Model for Communicating Embedded Systems. In: Proceedings of the 16th Mediterranean Conference on Control and Automation, IEEE, Los Alamitos (2008)Google Scholar
  4. 4.
    Bujorianu, M.L., Bujorianu, M.C.: Uncertainty and Reconfigurability in Hilbertean Formal Methods, Technical Report TR-CTIT-08-20 Centre for Telematics and Information Technology, University of Twente (2008)Google Scholar
  5. 5.
    Bujorianu, M.L., Lygeros, J.: General Stochastic Hybrid Systems: Modelling and Optimal Control. In: Proc. 43th Conference in Decision and Control, pp. 182–187. IEEE Press, Los Alamitos (2004)Google Scholar
  6. 6.
    Bujorianu, M.L.: Extended Stochastic Hybrid Systems and their Reachability Problem. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 234–249. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Bujorianu, M.L., Bujorianu, M.C.: Co-evolution Preserving Model Reduction for Uncertain Cyber-physical Systems. In: Filipe, J., Andrade-Cetto, J., Ferrier, J.-L. (eds.) Proceedings of the 6th International Conference on Informatics in Control, Automation and Robotics - Signal Processing, Systems Modeling and Control, Milan, Italy, July 2-5, pp. 39–46. INSTICC Press (2009)Google Scholar
  8. 8.
    Ethier, S.N., Kurtz, T.G.: Markov Processes: Characterization and Convergence. John Wiley and Sons, Chichester (1986)MATHGoogle Scholar
  9. 9.
    Davis, M.H.A.: Markov Models and Optimization. Chapman and Hall, Boca Raton (1993)MATHGoogle Scholar
  10. 10.
    Bayem, H., Phulpin, Y., Dessante, P., Bect, J.: Probabilistic Computation of Wind Farm Power Generation based on Wind Turbine Dynamic Modelling. PMAPS (2008)Google Scholar
  11. 11.
    Iscoe, I., McDonald, D.: Induced Dirichlet Forms and Capacitary Inequalities. Ann. Prob. 18(3), 1195–1221 (1990)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Ma, M., Rockner, M.: The Theory of (Non-Symmetric) Dirichlet Forms and Markov Processes. Springer, Heidelberg (1990)Google Scholar
  13. 13.
    Rogers, L.C.G., Pitman, J.W.: Markov Functions. Ann. Prob. 9(4), 573–582 (1981)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Tabuada, P.: Cyber-Physical Systems Position Paper presented at NSF Workshop on Cyber-Physical Systems (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Manuela L. Bujorianu
    • 1
  • Marius C. Bujorianu
    • 1
  1. 1.School of MathematicsUniversity of ManchesterU.K.

Personalised recommendations