Advertisement

Algorithmic Nominal Game Semantics

  • Andrzej S. Murawski
  • Nikos Tzevelekos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6602)

Abstract

We employ automata over infinite alphabets to capture the semantics of a finitary fragment of ML with ground-type references. Our approach is founded on game semantics, which allows us to translate programs into automata in such a way that contextual equivalence is characterized by a finitary notion of bisimilarity. As a corollary, we derive a decidability result for a class of first-order programs, including open ones that contain unspecified first-order procedures.

Keywords

Canonical Form Game Model Outgoing Transition Reference Equality Typing Judgment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abramsky, S., McCusker, G.: Call-by-value games. In: Nielsen, M. (ed.) CSL 1997. LNCS, vol. 1414, pp. 1–17. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  2. 2.
    Ahmed, A., Dreyer, D., Rossberg, A.: State-dependent representation independence. In: Proc. of POPL, pp. 340–353. ACM, New York (2009)Google Scholar
  3. 3.
    Bojańczyk, M., Muscholl, A., Schwentick, T., Segoufin, L., David, C.: Two-variable logic on words with data. In: Proceedings of LICS, pp. 7–16 (2006)Google Scholar
  4. 4.
    Dreyer, D., Neis, G., Birkedal, L.: The impact of higher-order state and control effects on local relational reasoning. In: Proc. of ICFP, pp. 143–156. ACM, New York (2010)Google Scholar
  5. 5.
    Gabbay, M.J., Pitts, A.M.: A new approach to abstract syntax with variable binding. Formal Aspects of Computing 13, 341–363 (2002)CrossRefzbMATHGoogle Scholar
  6. 6.
    Ghica, D.R.: Regular-language semantics for a call-by-value programming language. In: Proc. of MFPS. ENTCS, vol. 45. Elsevier, Amsterdam (2001)Google Scholar
  7. 7.
    Kaminski, M., Francez, N.: Finite-memory automata. Theor. Comput. Sci. 134(2), 329–363 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    McCusker, G.: On the semantics of Idealized Algol without the bad-variable constructor. In: Proc. of MFPS. ENTCS, vol. 83. Elsevier, Amsterdam (2003)Google Scholar
  9. 9.
    Montanari, U., Pistore, M.: An introduction to history dependent automata. In: ENTCS vol. 10 (1997)Google Scholar
  10. 10.
    Murawski, A.S.: Functions with local state: regularity and undecidability. Theor. Comput. Sci. 338(1/3), 315–349 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Murawski, A.S., Ong, C.-H.L., Walukiewicz, I.: Idealized Algol with ground recursion and DPDA equivalence. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 917–929. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Murawski, A.S., Tzevelekos, N.: Full abstraction for Reduced ML. In: de Alfaro, L. (ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 32–47. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Murawski, A.S., Tzevelekos, N.: Block structure vs scope extrusion: between innocence and omniscience. In: Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 33–47. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over infinite alphabets. ACM Trans. Comput. Log. 5(3), 403–435 (2004)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Pitts, A.M., Stark, I.D.B.: Operational reasoning for functions with local state. In: Gordon, A.D., Pitts, A.M. (eds.) Higher-Order Operational Techniques in Semantics, pp. 227–273. Cambridge University Press, Cambridge (1998)Google Scholar
  16. 16.
    Stark, I.D.B.: Names and Higher-Order Functions. PhD thesis, University of Cambridge Computing Laboratory, Technical Report No. 363 (1995)Google Scholar
  17. 17.
    Tzevelekos, N.: Fresh-register automata. In: Proceedings of POPL. ACM, New York (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Andrzej S. Murawski
    • 1
  • Nikos Tzevelekos
    • 2
  1. 1.Department of Computer ScienceUniversity of LeicesterLeicesterUK
  2. 2.Computing LaboratoryOxford UniversityOxfordUK

Personalised recommendations