Biochemical Reaction Rules with Constraints

  • Mathias John
  • Cédric Lhoussaine
  • Joachim Niehren
  • Cristian Versari
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6602)


We propose React(C), an expressive programming language for stochastic modeling and simulation in systems biology that is based on biochemical reactions with constraints. We prove that React(C) can express the stochastic π-calculus, in contrast to previous rule-based programming languages, and further illustrate the high expressiveness of React(C). We present a stochastic simulator for React(C) independently of the choice of the constraint language C. Our simulator decides for a given reaction rule whether it can be applied to the current biochemical solution. We show that this decision problem is NP-complete for arbitrary constraint systems C and that it can be solved in polynomial time for rules of bounded arity. In practice, we propose to solve this problem by constraint programming.


Normal Form Inference Rule Constraint Programming Constraint Language Reaction Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Blinov, M.L., Faeder, J.R., Goldstein, B., Hlavacek, W.S.: Bionetgen: software for rule-based modeling of signal transduction based on the interactions of molecular domains. Bioinformatics 20(17), 3289–3291 (2004)CrossRefGoogle Scholar
  2. 2.
    Cardelli, L.: From processes to odes by chemistry. In: IFIP TCS. IFIP, vol. 273, pp. 261–281. Springer, Heidelberg (2008)Google Scholar
  3. 3.
    Chabrier-Rivier, N., Fages, F., Soliman, S.: The biochemical abstract machine biocham. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 172–191. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J.: Abstracting the differential semantics of rule-based models: Exact and automated model reduction. In: 25th LICS, pp. 362–381. IEEE Press, Los Alamitos (2010)Google Scholar
  5. 5.
    Danos, V., Feret, J., Fontana, W., Krivine, J.: Scalable simulation of cellular signaling networks. In: Shao, Z. (ed.) APLAS 2007. LNCS, vol. 4807, pp. 139–157. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Danos, V., Laneve, C.: Formal molecular biology. TCS 325(1), 69–110 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Fournet, C., Gonthier, G.: The reflexive cham and the join-calculus. In: POPL, pp. 372–385. ACM Press, New York (1996)Google Scholar
  8. 8.
    Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. Journal of Computational Physics 22(4), 403–434 (1976)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Gilroy, S.W., Harrison, M.D.: SBML: a user interface mark-up language based on interaction style. Int. J. Web Eng. Technol. 4(2), 207–234 (2008)CrossRefGoogle Scholar
  10. 10.
    John, M., Lhoussaine, C., Niehren, J.: Dynamic compartments in the imperative pi calculus. In: Degano, P., Gorrieri, R. (eds.) CMSB 2009. LNCS, vol. 5688, pp. 235–250. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    John, M., Lhoussaine, C., Niehren, J., Uhrmacher, A.: The attributed pi calculus with priorities. In: Priami, C., Breitling, R., Gilbert, D., Heiner, M., Uhrmacher, A.M. (eds.) Transactions on Computational Systems Biology XII. LNCS, vol. 5945, pp. 13–76. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Krivine, J., Danos, V., Benecke, A.: Modelling epigenetic information maintenance: A kappa tutorial. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 17–32. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Kuttler, C., Lhoussaine, C., Nebut, M.: Rule-based modeling of transcriptional attenuation at the tryptophan operon. In: Priami, C., Breitling, R., Gilbert, D., Heiner, M., Uhrmacher, A.M. (eds.) Transactions on Computational Systems Biology XII. LNCS, vol. 5945, pp. 199–228. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Kuttler, C., Lhoussaine, C., Niehren, J.: A stochastic pi calculus for concurrent objects. In: Anai, H., Horimoto, K., Kutsia, T. (eds.) Ab 2007. LNCS, vol. 4545, pp. 232–246. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Laneve, C., Pradalier, S., Zavattaro, G.: From biochemistry to stochastic processes. ENTCS 253(3), 167–185 (2009)Google Scholar
  16. 16.
    Papanikolaou, N.: The space and motion of communicating agents author: Robin Milner. SIGACT News 41(3), 51–55 (2010)CrossRefGoogle Scholar
  17. 17.
    Phillips, A., Cardelli, L.: Efficient, correct simulation of biological processes in the stochastic pi-calculus. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS (LNBI), vol. 4695, pp. 184–199. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Priami, C.: Stochastic pi-calculus. Comput. J. 38(7), 578–589 (1995)CrossRefGoogle Scholar
  19. 19.
    Ramsey, S., Orrell, D., Bolouri, H.: Dizzy: Stochastic simulation of large-scale genetic regulatory networks. J. Bioinformatics and Computational Biology 3(2), 415–436 (2005)CrossRefGoogle Scholar
  20. 20.
    Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.Y.: Bioambients: an abstraction for biological compartments. TCS 325(1), 141–167 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Regev, A., Shapiro, E.: Cells as Computation. Nature 419, 343 (2002)CrossRefGoogle Scholar
  22. 22.
    Romanel, A., Priami, C.: On the computational power of BlenX. TCS 411(2), 542–565 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Versari, C.: A core calculus for a comparative analysis of bio-inspired calculi. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 411–425. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mathias John
    • 1
    • 2
  • Cédric Lhoussaine
    • 1
    • 2
  • Joachim Niehren
    • 1
    • 3
  • Cristian Versari
    • 4
  1. 1.BioComputing, LIFL (CNRS UMR8022) & IRI (CNRS USR3078)France
  2. 2.University of Lille 1France
  3. 3.InriaLilleFrance
  4. 4.University of BolognaItaly

Personalised recommendations