Advertisement

A ‘Frequency Blind’ Method for Symbol Rate Estimation

  • Saurav Zaman Khan
  • Ahmed Mostayed
  • Md. Ekramul Kabir
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 86)

Abstract

Estimation of the symbol rate has important applications in receiver synchronization for symbol time recovery. In this paper the problem is investigated using Smoothen Non-Linear Energy Operator (SNEO). Unlike wavelet based methods in [2], [3], [4] the proposed algorithm is completely blind because it does not require any priory information regarding the modulation type or carrier frequency. Moreover, the proposed algorithm is computationally efficient. Simulation results also proof the effectiveness of the proposed algorithm.

Keywords

Digital Modulation Symbol Rate Non-linear Energy Operator SNEO 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dobre, O.A., Abdi, A., Bar-Ness, Y., Su, W.: Blind modulation classification: a concept whose time has come. In: Proc. IEEE Sarnoff Symposium, Princeton, US, pp. 223–228 (2005)Google Scholar
  2. 2.
    Ho, K.C., Prokopiw, W., Chan, Y.T.: Modulation Identification of Digital Signals by the Wavelet Transform. IEE Proceedings – Radar, Sonar and Navigation 147(4), 169–176 (2000)CrossRefGoogle Scholar
  3. 3.
    Chan, Y.T., Plews, J.W., Ho, K.C.: Symbol Rate Estimation by the Wavelet Transform. In: IEEE International Symposium on Circuits and Systems, pp. 177–180 (1997)Google Scholar
  4. 4.
    Xu, J., Wang, F.-P., Wang, Z.-J.: The Improvement of Symbol Rate Estimation by the Wavelet Transform. In: ICCCS 2005 (2005)Google Scholar
  5. 5.
    Gao, Y., Li, M., Huang, Z., Lu, J.: A symbol rate estimation algorithm based on Morlet wavelet transform and autocorrelation. In: YC-ICT 2009, Beijing, pp. 239–242 (2009)Google Scholar
  6. 6.
    Yin, W., Wang, K.: A new method to symbol rate estimation of MPSK signals. In: Congress on Image and Signal Processing (CISP 2008), China, pp. 394–398 (2008)Google Scholar
  7. 7.
    Chan, Y.T., Lee, B.H., Inkol, R., Chan, F.: Estimation of symbol rate from the autocorrelation function. In: Canadian Conference on Electrical and Computer Engineering (CCECE 2009), pp. 547–550 (2009)Google Scholar
  8. 8.
    Barnes, W.J., LaSorte, N., Rafai, H., Yeary, M.B.: Symbol rate classification of PSK/QAM signals using direct frequency estimators. In: Instrumentation and Measurement Technology Conference (I2MTC 2009), Singapore, pp. 943–946 (2009)Google Scholar
  9. 9.
    Kaiser, J.F.: On a Simple Algorithm to Calculate the Energy of a Signal. In: Proc. IEE International Conference Acoustic Speech and Signal Processing, Albuquerque, NM, pp. 381–384 (1990)Google Scholar
  10. 10.
    Hamila, R., Astola, J., Cheikh, F.A., Gabbouj, M., Renfors, M.: Teager Energy and Ambiguity Function. IEEE Transaction on Signal Processing 47(1), 260–262 (1999)CrossRefGoogle Scholar
  11. 11.
    Kaiser, J.F.: Some Useful Properties of Teager’s Energy Operators. In: Proc. IEEE International Conference Acoustic Speech and Signal Processing, Minneapolis, MN, vol. 3, pp. 149–152 (1993)Google Scholar
  12. 12.
    Mukhopadhyay, S., Ray, G.C.: A New Interpretation of Non-Linear Energy Operator and Its Efficiency in Spike Detection. IEEE Trans. on Biomedical Engineering 45(2), 180–187 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Saurav Zaman Khan
    • 1
  • Ahmed Mostayed
    • 2
  • Md. Ekramul Kabir
    • 3
  1. 1.Department of Biomedical EngineeringKyung Hee UniversitySuwonRepublic of Korea
  2. 2.Department of Mechanical EngineeringUniversity of Western AustraliaPerthAustralia
  3. 3.Department of Applied Physics, Electronic and Communication EngineeringUniversity of DhakaDhakaBangladesh

Personalised recommendations