Compromise Based Evolutionary Multiobjective Optimization Algorithm for Multidisciplinary Optimization

  • Benoît GuédasEmail author
  • Xavier Gandibleux
  • Philippe Dépincé
Conference paper
Part of the Lecture Notes in Economics and Mathematical Systems book series (LNE, volume 648)


Multidisciplinary Design Optimization deals with engineering problems composed of several sub-problems – called disciplines – that can have antagonist goals and thus require to find compromise solutions. Moreover, the sub-problems are often multiobjective optimization problems. In this case, the compromise solutions between the disciplines are often considered as compromises between all objectives of the problem, which may be not relevant in this context. We propose two alternative definitions of the compromise between disciplines. Their implementations within the well-known NSGA-II algorithm are studied and results are discussed.


Compromise solutions Evolutionary algorithm Multidisciplinary optimization Multiobjective optimization Preferences. 



The authors would like to thank the regional council of the Pays de la Loire (France), MILES project, for their support of this research.


  1. Better M., Glover F., Kochenberger G., Wang H.: Simulation optimization: application in risk management. International Journal of Information Technology & Decision Making 7(4):571–587 (2008).Google Scholar
  2. Deb K.: Multi-objective optimization using evolutionary algorithms. Wiley (2001). 518 p.Google Scholar
  3. Ehrgott M.: Multicriteria optimization. Springer, Berlin Heidelberg, 2nd edition (2005). 323 p.Google Scholar
  4. Engau A., Wiecek M.M.: 2D decision-making for multicriteria design optimization. Structural and Multidisciplinary Optimization 34(4):301–315 (2007).Google Scholar
  5. Fonseca C., Fleming P.: Genetic algorithms for multiobjective optimization: formulation discussion and generalization. In : Proceedings of the 5th International Conference on Genetic Algorithms, pp. 416–423, San Francisco, CA, USA (1993).Google Scholar
  6. Goldberg D.E.: Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Reading, Massachusetts (1989). 432 p.Google Scholar
  7. Guédas B.: Proposition de compromis pour le calcul de solutions préférées à l’aide d’un algorithme évolutionnaire multiobjectif en optimisation multidisciplinaire. Ph.D. Thesis, École Centrale de Nantes, France (2010).Google Scholar
  8. Guédas B., Dépincé P., Gandibleux X.: Vers une notion de compromis en optimisation multidisciplinaire multiobjectif. In: Book of abstracts of the ROADEF 2009 Conf., Nancy, France (2009).Google Scholar
  9. Tosserams S., Etman L.F.P., Rooda J.E.: A classification of methods for distributed system optimization based on formulation structure. Structural and Multidisciplinary Optimization 39(5):503–517 (2009).Google Scholar
  10. Gunawan S., Farhang-Mehr A., Azarm S.: Multi-level multi-objective genetic algorithm using entropy to preserve diversity. In: Fonseca C.M., Fleming P., Zitzler E., Deb K., Thiele L. (eds) Evolutionary Multicriterion Optimization, LNCS 2632, pp. 148–161 (2003). Springer, Berlin Heidelberg.Google Scholar
  11. Rabeau S., Dépincé P., and Bennis F.: Collaborative optimization of complex systems: a multidisciplinary approach. International Journal on Interactive Design and Manufacturing 1(4):209–218 (2007).Google Scholar
  12. Srinivas N., Deb K.: Multiobjective optimization using nondominated sorting in genetic algorithm. Evolutionary Computation 2(3):221–248 (1994).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Benoît Guédas
    • 1
    Email author
  • Xavier Gandibleux
    • 2
  • Philippe Dépincé
    • 1
  1. 1.IRCCyNÉcole Centrale de NantesNantes Cedex 03France
  2. 2.LINAUniversité de NantesNantes Cedex 03France

Personalised recommendations