Advertisement

A Strategic Framework for the Design of Recycling Networks for Lithium-Ion Batteries from Electric Vehicles

  • Claas Hoyer
  • Karsten Kieckhäfer
  • Thomas S. Spengler
Conference paper

Abstract

In this paper, we develop a strategic framework for the design of recycling networks for spent lithium-ion batteries from electric vehicles. The framework provides an overview of possible configuration alternatives and an integrated approach for network planning and process configuration tasks. It describes requirements on a network as well as on a process level. For that purpose, we analyse general framework conditions concerning battery return, materials, and recycling processes. On that basis, it is possible to develop a mathematical optimisation model which enables decision support concerning the optimal evolvement of recycling sites, capacities, and processes over time.

Keywords

Strategic Network Planning Recycling Spent Lithium-Ion Batteries 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Gaines, L., Cuenca, R. (2000): Costs of Lithium-Ion Batteries for Vehicles. Operated by The University of Chicago, under Contract W-31-109-Eng-38, for the United States Department of Energy, Argonne, Illinois. http://www.doe.gov/bridge.
  2. 2.
    U.S. Geological Survey (2010): Mineral commodity summaries 2010, Washington. http://minerals.usgs.gov/minerals/pubs/mcs/2010/mcs2010.pdf(accessed October 26, 2010).
  3. 3.
    Dewulf, J., van der Vorst, G., Denturck, K., van Langenhove, H., Ghyoot, W., Tytgat, J., Vandeputte, K. (2010): Recycling rechargeable lithium ion batteries: Critical analysis of natural resource savings, in: Resources, Conservation and Recycling, Vol. 54, pp. 229–234.CrossRefGoogle Scholar
  4. 4.
    Deutscher Bundestag (2009): BattG. June 25, 2009.Google Scholar
  5. 5.
    Bundesministerium für Umwelt (2009): BattGDV. November 12, 2009.Google Scholar
  6. 6.
    Shukla, A. K., Prem Kumar, T. (2008): Materials for nextgeneration lithium batteries, in: Current Science, Vol. 94, No. 3, pp. 314–330.Google Scholar
  7. 7.
    Arora, P., Zhang, Z. J. (2004): Battery Separators, in: Chemical Review, Vol. 104, pp. 4419–4462.CrossRefGoogle Scholar
  8. 8.
    Book, M., Groll, M., Mosquet, X., Rizoulis, D., Sticher, G. (2009): The Comeback of The Electric Car? How Real, How Soon, and What Must Happen Next, 1/09 Rev.2.Google Scholar
  9. 9.
    Bundesministerium für Umwelt (2009): Programm zur Marktaktivierung für Elektrofahrzeuge, Berlin.Google Scholar
  10. 10.
    Sarre, G., Blanchard, P., Brouselly, M. (2004): Aging of lithium-ion batteries, in: Journal of Power Sources, Vol. 127, pp. 65–71.CrossRefGoogle Scholar
  11. 11.
    Marano, V., Onori, S., Guezennec, Y., Rizzoni, G., Madella, N. (2009): Lithium-ion Batteries Life Estimation for Plug-in Hybrid Electric Vehicles, in: 5th IEEE Vehicle Power and Propulsion Conference, VPPC '09, pp. 536–543.Google Scholar
  12. 12.
    Notter, D. A., Gauch, M., Widmer, R., Wäger, P., Stamp, A., Zah, R., Althaus, H.-J. (2010): Contribution of Li-Ion Batteries to the Environmental Impact of Electric Vehicles, in: Environmental Science & Technology, Vol. 44, pp. 6550–6556.CrossRefGoogle Scholar
  13. 13.
    Zackrisson, M., Avellán, L., Orlenius, J. (2010): Life cycle assessment of lithium-ion batteries for plug-in hybrid electric vehicles - Critical issues, in: Journal of Cleaner Production, Vol. 18, pp. 1517–1527.CrossRefGoogle Scholar
  14. 14.
    Xu, J., Thomas, H. R. F. R. W., Lum, K. R., Wang, J., LiangGoogle Scholar
  15. 15.
    B. (2008): A review of processes and technologies for the recycling of lithium-ion secondary batteries, in: Journal of Power Sources, Vol. 177, pp. 512–527.CrossRefGoogle Scholar
  16. 16.
    Kwade, A. (2010): LithoRec - auf dem Weg zum "intelligenten" Recycling von Traktionsbatterien, in: 7. Braunschweiger Symposium Hybrid-, Elektrofahrzeuge und Energiemanagement, Braunschweig.Google Scholar
  17. 17.
    Püchert, H. (1996): Ein Ansatz zur strategischen Planung von Kreislaufwirtschaftssystemen: dargestellt für das Altautorecycling und die Eisen- und Stahlindustrie. Mit einem Geleitw. von Otto Rentz, Dt. Univ.-Vlg., Wiesbaden.Google Scholar
  18. 18.
    Schultmann, F., Engels, B., Rentz, O. (2003): Closed-Loop Supply Chains for Spent Batteries, in: Interfaces, Vol. 33, No. 6, pp. 57–71.CrossRefGoogle Scholar
  19. 19.
    Walther, G., Spengler, T. S. (2005): Impact of WEEE-directive on reverse logistics in Germany, in: International Journal of Physical Distribution & Logistics Management, Vol. 35, No. 5, pp. 337–361.CrossRefGoogle Scholar
  20. 20.
    Walther, G., Spengler, T. S., Queiruga Dios, D. A. (2008):Google Scholar
  21. 21.
    Facility location planning for treatment of large householdGoogle Scholar
  22. 22.
    appliances in Spain, in: International Journal of EnvironmentalGoogle Scholar
  23. 23.
    Technology and Management, Vol. 8, No. 4, pp. 405–425.Google Scholar
  24. 24.
    Walther, G., Schatka, A., Spengler, T. S. (2007): GestaltungGoogle Scholar
  25. 25.
    von Netzwerken zur Produktion von synthetischenGoogle Scholar
  26. 26.
    Biokraftstoffen der zweiten Generation, in: UWF -Google Scholar
  27. 27.
    Umweltwirtschaftsforum, Vol. 18, No. 1, pp. 61–69.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Claas Hoyer
    • 1
  • Karsten Kieckhäfer
    • 1
  • Thomas S. Spengler
    • 1
  1. 1.Institute of Automotive Management and Industrial ProductionTechnische Universität BraunschweigBraunschweigGermany

Personalised recommendations