Advertisement

An Overview on Degradation Modelling for Service Cost Estimation

  • Pedro Fernandes
  • Rajkumar Roy
  • Jörn Mehnen
  • Andrew Harrison
Conference paper

Abstract

The problem of component degradation in aero-engines has become a matter of great interest in the context of Life Cycle Cost (LCC) for Original Equipment Manufacturers (OEMs). On root causes of cost incurred in the operational phase is the uncertainty around component degradation, leading to service support inefficiencies such as under or over capacity in the maintenance network. Different life prediction approaches are available; each has varying applicability to different degradation mechanisms, data quality and availability. This paper considers the necessity of degradation modelling capability for aero-engines LCC and reviews the different approaches found in literature and their underlying concepts.

Keywords

Life Cycle Cost Estimation Component Degradation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7 REFERENCES

  1. 1.
    Gebraeel, N. and Pan, J. (2008), "Prognostic degradationmodels for computing and updating residual life distributionsin a time-varying environment", IEEE Transactions onReliability, vol. 57, no. 4, pp. 539-550.CrossRefGoogle Scholar
  2. 2.
    Harrison, A. (2006), "Design for service - Harmonisingproduct design with a services strategy", 2006 ASME 51stTurbo Expo, Vol. 2, 6-11 May 2006, Barcelona, pp. 135-143.Google Scholar
  3. 3.
    Barringer, H. P. and Barringer, P. E. (1998), "Life Cycle CostAnd Good Practices", NPRA Maintenance Conference, 1998,San Antonio, Texas, USA, pp. 1-26.Google Scholar
  4. 4.
    Pitot, M. (2004), Generic European Life Cycle CostNomenclature and Structure, D2.2.1_1, VIVACE.Google Scholar
  5. 5.
    Burkett, M. A. (2006), "DMTrade - A Rolls-Royce tool to modelthe impact of design changes and maintenance strategies onlifetime reliability and maintenance cost", 2006 ASME 51stTurbo Expo, Vol. 2, 6-11 May 2006, Barcelona, pp. 11.Google Scholar
  6. 6.
    Eres, M. H. and Scanlan, J. P. (2007), "A hierarchical lifecycle cost model for a set of aero-engine components", 7thAIAA Aviation Technology, Integration, and OperationsConference, Vol. 1, 18-20 September 2007, Belfast, NorthernIreland, pp. 41-46.Google Scholar
  7. 7.
    El Hayek, M., Van Voorthuysen, E. and Kelly, D. W. (2005),"Optimizing life cycle cost of complex machinery with rotablemodules using simulation", Journal of Quality in MaintenanceEngineering, vol. 11, no. 4, pp. 333-347.Google Scholar
  8. 8.
    Eady, C. (2000), Modes of Gas Turbine Component LifeConsumption, RTO-TR-028, Research and TechnologyOrganization of NATO.Google Scholar
  9. 9.
    Byington, C. S., Roemer, M. J. and Galie, T. (2002),"Prognostic enhancements to diagnostic systems forimproved condition-based maintenance", IEEE AerospaceConference, Vol. 6, Big Sky, Montana, USA, pp. 2815-2824.Google Scholar
  10. 10.
    Bagul, Y. G., Zeid, I. and Kamarthi, S. V. (2009), "Overviewof remaining useful life methodologies", ASME DETC 2008,Vol. 3, 3-6 August 2008, NY, USA, pp. 1391-1400.Google Scholar
  11. 11.
    Dragomir, O. E., Gouriveau, R., Dragomir, F., Minca, E. andZerhouni, N. (2009), "Review of Prognostic Problem inCondition-Based Maintenance", European ControlConference, 2009, Budapest, Hungary, pp. 6.Google Scholar
  12. 12.
    Gorjian, N., Ma, L., Mittinty, M., Yarlagadda, P. and Sun, Y.(2009), "A review on degradation models in reliabilityanalysis", 4th World Congress on Engineering AssetManagement, 28-30 September 2009, Athens, Greece, pp.16.Google Scholar
  13. 13.
    Schwabacher, M. A. (2005), "A survey of data-drivenprognostics", InfoTech at Aerospace: AdvancingContemporary Aerospace Technologies and Their Integration,Vol. 2, 26-29 September 2005, Arlington, VA, pp. 887-891.Google Scholar
  14. 14.
    Nelson, W. B. (2010), "Defect Initiation, Growth, and Failure– A General Statistical Model and Data Analyses", in Nikulin,M. S., Balakrishnan, N., Huber-Carol, C., et al (eds.)Advances in Degradation Modeling, 1st ed, BirkhäuserBoston, pp. 27-37.Google Scholar
  15. 15.
    Hall, P. L. and Strutt, J. E. (2003), "Probabilistic physics-offailuremodels for component reliabilities using Monte Carlosimulation and Weibull analysis: a parametric study",Reliability Engineering & System Safety, vol. 80, no. 3, pp.233-242.CrossRefGoogle Scholar
  16. 16.
    Grooteman, F. (2008), "A stochastic approach to determinelifetimes and inspection schemes for aircraft components",International Journal of Fatigue, vol. 30, no. 1, pp. 138-149.CrossRefGoogle Scholar
  17. 17.
    Watson, M., Byington, C., Edwards, D. and Amina, S.(2005), "Dynamic Modeling and Wear-Based RemainingUseful Life Prediction of High Power Clutch Systems",Tribology Transactions, vol. 48, no. 2, pp. 208-217.CrossRefGoogle Scholar
  18. 18.
    Tinga, T. (2010), "Application of physical failure models toenable usage and load based maintenance", ReliabilityEngineering and System Safety, vol. 95, no. 10, pp. 1061-1075.CrossRefGoogle Scholar
  19. 19.
    Bartelmus, W. and Zimroz, R. (2009), "Vibration conditionmonitoring of planetary gearbox under varying external load",Mechanical Systems and Signal Processing, vol. 23, no. 1,pp. 246-257.CrossRefGoogle Scholar
  20. 20.
    Li, Y., Billington, S., Zhang, C., Kurfess, T., Danyluk, S. andLiang, S. (1999), "Adaptive prognostics for rolling elementbearing condition", Mechanical Systems and SignalProcessing, vol. 13, no. 1, pp. 103-113.CrossRefGoogle Scholar
  21. 21.
    Li, Y., Kurfess, T. R. and Liang, S. Y. (2000), "Stochasticprognostics for rolling element bearings", MechanicalSystems and Signal Processing, vol. 14, no. 5, pp. 747-762.CrossRefGoogle Scholar
  22. 22.
    Orsagh, R., Roemer, M., Sheldon, J. and Klenke, C. J.(2004), "A comprehensive prognostics approach for predictinggas turbine engine bearing life", 2004 ASME Turbo Expo, Vol.2, 14-17 June 2004, Vienna, pp. 777.Google Scholar
  23. 23.
    Orsagh, R. F., Sheldon, J. and Klenke, C. J. (2003),"Prognostics/diagnostics for gas turbine engine bearings",2003 ASME Turbo Expo, Vol. 1, 16-19 June 2003, Atlanta,GA, pp. 159.Google Scholar
  24. 24.
    Harris, T. A. and McCool, J. I. (1996), "On the accuracy ofrolling bearing fatigue life prediction", Journal of Tribology,vol. 118, no. 2, pp. 297-307.CrossRefGoogle Scholar
  25. 25.
    Ioannides, E. and Harris, T. A. (1985), "New Fatigue LifeModel for Rolling Bearings", Journal of Tribology, vol. 107, no.3, pp. 367-378.CrossRefGoogle Scholar
  26. 26.
    Loannides, E., Harris, T. A. and Ragen, M. (1990),"Endurance of aircraft gas turbine mainshaft ball bearingsanalysisusing improved fatigue life theory. Part 1. Applicationto a long-life bearing", Journal of Tribology, vol. 112, no. 2,pp. 304-308.Google Scholar
  27. 27.
    Harris, T., Loannides, E., Ragen, M. and Tam, H. (1990),"Endurance of aircraft gas turbine mainshaft ball bearingsanalysisusing improved fatigue life theory. Part 2. Applicationto a bearing operating under difficult lubrication conditions",Journal of Tribology, vol. 112, no. 2, pp. 309-316.Google Scholar
  28. 28.
    Chelidze, D. and Cusumano, J. P. (2004), "A dynamicalsystems approach to failure prognosis", Journal of Vibrationand Acoustics, Transactions of the ASME, vol. 126, no. 1, pp.2-8.CrossRefGoogle Scholar
  29. 29.
    Chelidze, D. (2002), "Multimode damage tracking and failureprognosis in electromechanical system", in Willett P.K. andKirubarajan T. (eds.), Components and Systems Diagnostics,Progrnostics, and Health Management II, Vol. 4733, 3-4 April2002, Orlando, FL, pp. 1-12.Google Scholar
  30. 30.
    Yu, W. K. and Harris, T. A. (2001), "A new stress-basedfatigue life model for ball bearings", Tribology Transactions,vol. 44, no. 1, pp. 11-18.CrossRefGoogle Scholar
  31. 31.
    Kotzalas, M. N. and Harris, T. A. (2001), "Fatigue failureprogression in ball bearings", Journal of Tribology, vol. 123,no. 2, pp. 238-242.CrossRefGoogle Scholar
  32. 32.
    Slottner, P. and Wärja, M. (2008), "Knowledge basedprognostics models for gas turbine core components", 2008ASME Turbo Expo, Vol. 1, 9-13 June 2008, Berlin, pp. 515-521.Google Scholar
  33. 33.
    Doel, D. L. (1989), "Diagnostic expert systems for gasturbine engines - Status and prospects", ASME, SAE, andASEE, Joint Propulsion Conference, 10-13 July 1989,Monterey, CA, USA, AIAA-89-2585.Google Scholar
  34. 34.
    Yang, M. and Shen, Q. (2008), "Fuzzy diagnosis ofturbomachines", International Journal of Knowledge-Basedand Intelligent Engineering Systems, vol. 12, no. 2, pp. 137-146.zbMATHGoogle Scholar
  35. 35.
    Ganguli, R. (2002), "Fuzzy logic intelligent system for gasturbine module and system fault isolation", Journal ofPropulsion and Power, vol. 18, no. 2, pp. 440-447.CrossRefGoogle Scholar
  36. 36.
    Meeker, W. Q. and Escobar, L. A. (1998), StatisticalMethods for Reliability Data, 1st ed, Wiley-Blackwell.Google Scholar
  37. 37.
    Li, Y. G. (2002), "Performance-analysis-based gas turbinediagnostics: A review", Proceedings of the Institution ofMechanical Engineers, Part A: Journal of Power and Energy,vol. 216, no. 5, pp. 363-377.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Pedro Fernandes
    • 1
  • Rajkumar Roy
    • 1
  • Jörn Mehnen
    • 1
  • Andrew Harrison
    • 2
  1. 1.School of Applied SciencesCranfield UniversityCranfieldUK
  2. 2.Rolls-Royce PlcDerbyUK

Personalised recommendations