Trends in Search Interaction

  • Ricardo Baeza-Yates
  • Paolo Boldi
  • Alessandro Bozzon
  • Marco Brambilla
  • Stefano Ceri
  • Gabriella Pasi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6585)

Abstract

This paper reports the main findings of a panel about trends in search engine interaction, focused upon the use of search engines for performing complex processes. The discussion focuses on the different evolutionary path followed by search engines with respect to other Web and information management solutions, making end users acquainted with the simplistic and never changing keyword-based query paradigm. The analysis delves into the pros and cons of personalization, contextualization, and exploration of Web information, with special attention to the presentation and user interaction aspects. In the end, we also wonder if the keyword-based query paradigm will ever change.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahn, J.-W., Brusilovsky, P.: Adaptive Visualization of Search Results: Bringing User Models to Visual Analytics. Information Visualization 8(3), 167–179 (2009)CrossRefGoogle Scholar
  2. 2.
    Baeza-Yates, R., Raghavan, P.: Next Generation Web Search. In: Ceri, S., Brambilla, M. (eds.) Search Computing. LNCS, vol. 5950, pp. 11–23. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Boldi, P., Bonchi, F., Castillo, C., Donato, D., Gionis, A., Vigna, S.: The query-flow graph: model and applications. In: Proceeding of the 17th ACM Conference on Information and Knowledge Management, Napa Valley, California, USA, October 26-30 (2008)Google Scholar
  4. 4.
    da Costa Pereira, C., Dragoni, M., Pasi, G.: Multidimensional Relevance: A New Aggregation Criterion. In: Boughanem, M., Berrut, C., Mothe, J., Soule-Dupuy, C. (eds.) ECIR 2009. LNCS, vol. 5478, pp. 264–275. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Dalvi, N.N., Kumar, R., Pang, B., Ramakrishnan, R., Tomkins, A., Bohannon, P., Keerthi, S., Merugu, S.: A Web of concepts. In: ACM Principles of Database Systems (PODS), pp. 1–12 (2009)Google Scholar
  6. 6.
    Davison, B., Najork, M., Converse, T.: SIGIR Worksheet Report: Adversarial Information Retrieval on the Web, AIRWeb (2006)Google Scholar
  7. 7.
    Donato, D., Bonchi, F., Chi, T., Maarek, Y.: Do you want to take notes?: identifying research missions in Yahoo! search pad. In: Proceedings of the 19th International Conference on World Wide Web, Raleigh, North Carolina, USA, April 26-30 (2010)Google Scholar
  8. 8.
    Goel, S., Broder, A.Z., Gabrilovich, E., Pang, B.: Anatomy of the long tail: ordinary people with extraordinary tastes. In: Proceedings of WSDM 2010, pp. 201–210 (2010)Google Scholar
  9. 9.
    He, D., Göker, A.: Detecting session boundaries from Web user logs. In: Proceedings of the BCS-IRSG 22nd Annual Colloquium on Information Retrieval Research, Cambridge, UK, pp. 57–66 (2000)Google Scholar
  10. 10.
    Jones, R., Klinkner, K.L.: Beyond the session timeout: automatic hierarchical segmentation of search topics in query logs. In: Proceeding of the 17th ACM Conference on Information and Knowledge Management, Napa Valley, California, USA, October 26-30 (2008)Google Scholar
  11. 11.
    Kelly, D., Teevan, J.: Implicit feedback for inferring user preference: A bibliography. SIGIR Forum 37(2), 18–28 (2003)CrossRefGoogle Scholar
  12. 12.
    Kobsa, A.: Privacy-Enhanced Web Personalization. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 628–670. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Micarelli, A., Gasparetti, F., Sciarrone, F., Gauch, S.: Personalized Search on the World Wide Web. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 195–230. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Pang, B., Lee, L.: Opinion Mining and Sentiment Analysis. Found. Trends Inf. Retr. 2, 1–2 (2008)CrossRefGoogle Scholar
  15. 15.
    O’Reilly, T.: What Is Web 2.0: Design Patterns and Business Models for the Next Generation of Software (2010), http://oreilly.com/web2/archive/what-is-web-20.html
  16. 16.
    Rafiei, D., Bharat, K., Shukla, A.: Diversifying Web search results. In: Proceedings of the 19th International Conference on World Wide Web, Raleigh, North Carolina, USA, April 26-30 (2010)Google Scholar
  17. 17.
    Smyth, B.: A Community-Based Approach to Personalizing Web Search (2007)Google Scholar
  18. 18.
    Surowiecki, J.: The wisdom of crowds. Knopf Doubleday Publishing Group (2005)Google Scholar
  19. 19.
    Teevan, J., Morris, M., Bush, S.: Discovering and using groups to improve personalized search. In: Proceedings of the ACM International Conference on Web Search and Data Mining, pp. 15–24 (2009)Google Scholar
  20. 20.
    White, R.W., Kules, B., Drucker, S.M., Schraefel, M.C.: Supporting Exploratory Search, Introduction. Communications of the ACM 49(4), 36–39 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ricardo Baeza-Yates
    • 1
  • Paolo Boldi
    • 2
  • Alessandro Bozzon
    • 3
  • Marco Brambilla
    • 3
  • Stefano Ceri
    • 3
  • Gabriella Pasi
    • 4
  1. 1.Yahoo! ResearchBarcelonaSpain
  2. 2.Dipartimento di Scienze dell’InformazioneUniversità degli Studi di MilanoMilanoItaly
  3. 3.Dipartimento di Elettronica e InformazionePolitecnico di MilanoMilanoItaly
  4. 4.DISCOUniversità degli Studi di Milano BicoccaMilanoItaly

Personalised recommendations