Complex Search, Ranks, and Biological Discovery: A User’s Perspective

  • Paolo Romano
  • Luciano Milanesi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6585)


This chapter presents a users perspective regarding the potential applications of the Search Computing technology for biomedical discovery. Recent research on human inherited diseases has increased the number of information resources useful to bridge medicine and biology and to associate genotype and phenotype. The application of the Search Computing technology is discussed in the frame of a number of techniques that can be applied in Life Sciences for managing distributed biomedical data: Federated databases, Grids, Cloud computing, Web Services, Workflow. Particular attention is then devoted to challenges and opportunities deriving from the application of ranking and the management of missing information. Finally, the definition of a standard score function, that could be adopted by all service providers in order to merge all the collected scores for the Search Computing, and the combined use of workflow management systems and Search Computing, are discussed.


Search Computing Grid computing workflow web services Bioinformatics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Romano, P.: Automation of in-silico data analysis processes through workflow management systems. Briefings in Bioinformatics 9, 57–68 (2008)CrossRefGoogle Scholar
  2. 2.
    Hull, D., Wolstencroft, K., Stevens, R., Goble, C., Pocock, M., Li, P., Oinn, T.: Taverna: a tool for building and running workflows of services. Nucleic Acids Research 34 (Web Server issue), W729–W732 (2006)CrossRefGoogle Scholar
  3. 3.
    Bhagat, J., Tanoh, F., Nzuobontane, E., Laurent, T., Orlowski, J., Roos, M., Wolstencroft, K., Aleksejevs, S., Stevens, R., Pettifer, S., Lopez, R., Goble, C.A.: BioCatalogue: a universal catalogue of web services for the life sciences. Nucleic Acids Research 38 (Web Server issue), W689–W694 (2010)CrossRefGoogle Scholar
  4. 4.
    Goble, C.A., Bhagat, J., Aleksejevs, S., Cruickshank, D., Michaelides, D., Newman, D., Borkum, M., Bechhofer, S., Roos, M., Li, P., De Roure, D.: myExperiment: a repository and social network for the sharing of bioinformatics workflows. Nucleic Acids Research 38 (Web Server issue), W677–W682 (2010)CrossRefGoogle Scholar
  5. 5.
    Armougom, F., Moretti, S., Keduas, V., Notredame, C.: The iRMSD: a local measure of sequence alignment accuracy using structural information. Bioinformatics 22, e35–e39 (2006)CrossRefGoogle Scholar
  6. 6.
    Kabsch, W.: A solution for the best rotation to relate two sets of vectors. Acta Crystallographica 32, 922–923 (1976)CrossRefGoogle Scholar
  7. 7.
    Zemla, A.: LGA: A method for finding 3D similarities in protein structures. Nucleic Acids Research 31, 3370–3374 (2003)CrossRefGoogle Scholar
  8. 8.
    Zhang, Y., Skolnick, J.: Scoring function for automated assessment of protein structure template quality. Proteins 57, 702–710 (2004)CrossRefGoogle Scholar
  9. 9.
    Zhang, Y., Skolnick, J.: TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Research 33, 2302–2309 (2005)CrossRefGoogle Scholar
  10. 10.
    Xu, J., Zhang, Y.: How significant is a protein structure similarity with TM-score=0.5? Bioinformatics 26, 889–895 (2010)CrossRefGoogle Scholar
  11. 11.
    Hastie, T., Tibshirani, R., Friedman, J., Franklin, J.: The elements of statistical learning: data mining, inference and prediction. The Mathematical Intelligencer 27, 83–85 (2005)Google Scholar
  12. 12.
    Han, J., Kamber, M.: Data mining: concepts and techniques. The Morgan Kaufmann Series in Data Management Systems. Morgan Kaufmann Publishers, San Francisco (2006)zbMATHGoogle Scholar
  13. 13.
    Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, Second Edition, 2nd edn. The Morgan Kaufmann Series in Data Management Systems. Morgan Kaufmann Publishers, San Francisco (2005)zbMATHGoogle Scholar
  14. 14.
    Mosca, E., Alfieri, R., Merelli, I., Viti, F., Calabria, A., Milanesi, L.: A multilevel data integration resource for breast cancer study. BMC Systems Biology 4, 76 (2010)CrossRefGoogle Scholar
  15. 15.
    Mosca, E., Bertoli, G., Piscitelli, E., Vilardo, L., Reinbold, R.A., Zucchi, I., Milanesi, L.: Identication of functionally related genes using data mining and data integration: a breast cancer case study. BMC Bioinformatics 10(Suppl 12), 8 (2009)CrossRefGoogle Scholar
  16. 16.
    D’Ursi, P., Chiappori, F., Merelli, I., Cozzi, P., Rovida, E., Milanesi, L.: Virtual screening pipeline and ligand modelling for H5N1 neuraminidase. Biochem. Biophys. Res. Commun. 383(4), 445–449 (2009)CrossRefGoogle Scholar
  17. 17.
    Milanesi, L., Petrillo, M., Sepe, L., Boccia, A., D’Agostino, N., Passamano, M., Di Nardo, S., Tasco, G., Casadio, R., Paolella, G.: Systematic analysis of human kinase genes: a large number of genes and alternative splicing events result in functional and structural diversity. BMC Bioinformatics 6(Suppl 4), S20 (2005)CrossRefGoogle Scholar
  18. 18.
    Milanesi, L., Romano, P., Castellani, G., Remondini, D., Liò, P.: Trends in Biomedical Complex Systems. BMC Bioinformatics 10(Suppl. 12), I1 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Paolo Romano
    • 1
  • Luciano Milanesi
    • 2
  1. 1.National Cancer Research InstituteGenovaItaly
  2. 2.National Research CouncilInstitute for Biomedical TechnologiesSegrateItaly

Personalised recommendations