Advertisement

A Climatologycal Analysis by Means of Soft Computing Models

  • Ángel Arroyo
  • Emilio Corchado
  • Verónica Tricio
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 87)

Abstract

This research analyzes the meteorological conditions of four different places in Spain. The case study is based on real data provided by the AEMET (Meteorological Spanish Agency) in 2009. Thirteen variables with atmospheric conditions are considered. Different Statistical and Soft Computing Models are applied to show the great variability of the environmental conditions in the four well selected places. The results are confirmed by the Annual Environmental Summarized 2009 provided by the AEMET.

Keywords

Artificial neural networks soft computing meteorology statistical models environmental conditions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    AEMET – Agencia Española de Meteorología, Public Access Database, http://www.aemet.es/es/servidor-datos/acceso-datos (last Access: 03/01/2011)
  2. 2.
    AEMET - Agencia Española de Meteorología Annual Climatology Summarized (2009), http://www.aemet.es/documentos/es/elclima/datos_climat/resumenes_climat/anuales/res_anual_clim_2009.pdf (last Access: 03/01/2011)
  3. 3.
    Arroyo, A., Corchado, E., Tricio, V.: Atmospheric Pollution Analysis by Unsupervised Learning. In: Corchado, E., Yin, H. (eds.) IDEAL 2009. LNCS, vol. 5788, pp. 767–772. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Arroyo, A., Corchado, E., Tricio, V.: Computational Methods for Immision Analysis of Urban Atmospheric Pollution. In: 9th International Conference Computational and Mathematical Methods in Science and Engineering, Gijón (2009)Google Scholar
  5. 5.
    Arroyo, A., Corchado, E., Tricio, V.: Soft computing models for an environmental application. In: Corchado, E., Novais, P., Analide, C., Sedano, J. (eds.) SOCO 2010. Advances in Intelligent and Soft Computing, vol. 73, pp. 127–135. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Corchado, E., Arroyo, A., Tricio, V.: Soft Computing Models to Identify Typical Meteoro-logical Days. Logic Journal of the IGPL (July 2010), ISSN 1368-9894 - Print ISSN 1367-0751, Impact factor:0.326Google Scholar
  7. 7.
    Zadeh, L.A.: Fuzzy logic, neural networks, and soft computing. ACM Commun. 37(3), 77–84 (1994)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Subudhi, B., Morris, A.S.: Soft computing methods applied to the control of a flexible robot manipulator. Applied Soft Computing 9(1), 149–158 (2009)CrossRefGoogle Scholar
  9. 9.
    Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley, Chichester (2002)Google Scholar
  10. 10.
    Oja, E., Ogawa, H., Wangviwattana, J.: Principal Components Analysis by Homogeneous Neural Networks, part 1. The Weighted Subspace Criterion. IEICE Transaction on Information and Systems E75D, 375–366 (1992)Google Scholar
  11. 11.
    Fyfe, C., Baddeley, R.: Non-linear data structure extraction using simple Hebbian networks. Biological Cybernetics 72(6), 541–533 (1995)Google Scholar
  12. 12.
    Oja, E.: Neural Networks, Principal Components and Subspaces. International Journal of Neural Systems 1, 68–61 (1989)Google Scholar
  13. 13.
    Corchado, E., MacDonald, D., Fyfe, C.: Maximum and Minimum Likelihood Hebbian Learning for Exploratory Projection Pursuit. Data Min. Knowl. Discov. 8(3), 203–225 (2004)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Corchado, E., Fyfe, C.: Connectionist Techniques for the Identification and Suppression of Interfering Underlying Factors. International Journal of Pattern Recognition and Artificial Intelligence (IJPRAI) 17(8), 1447–1466 (2003)CrossRefGoogle Scholar
  15. 15.
    Corchado, E., Han, Y., Fyfe, C.: Structuring global responses of local filters using lateral connections. Journal of Experimental and Theoretical Artificial Intelligence 15(4), 473–487 (2003)zbMATHCrossRefGoogle Scholar
  16. 16.
    Corchado, E., Burgos, P., Rodriguez, M., Tricio, V.: A Hierarchical Visualization Tool to Analyse the Thermal Evolution of Construction Materials. In: Luo, Y. (ed.) CDVE 2004. LNCS, vol. 3190, pp. 238–245. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ángel Arroyo
    • 1
  • Emilio Corchado
    • 2
  • Verónica Tricio
    • 3
  1. 1.Department of Civil EngineeringUniversity of BurgosBurgosSpain
  2. 2.Department of Computer Science and AutomaticUniversity of SalamancaSalamancaSpain
  3. 3.Department of PhysicsUniversity of BurgosBurgosSpain

Personalised recommendations