A System for Multi-label Classification of Learning Objects

  • Vivian F. López Batista
  • Fernando Prieta Pintado
  • Ana Belén Gil
  • Sara Rodríguez
  • María N. Moreno
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 87)


The rapid evolution within the context of e-learning is closely linked to international efforts on the standardization of Learning Object (LO), which provides ubiquitous access to multiple and distributed educational resources in many repositories. This article presents a system that enables the recovery and classification of LO and provides individualized help with selecting learning materials to make the most suitable choice among many alternatives. For this classification, it is used a special multi-label data mining designed for the LO ranking tasks. According to each position, the system is responsible for presenting the results to the end user. The learning process is supervised, using two major tasks in supervised learning from multi-label data: multi-label classification and label ranking.


learning object multi-label data mining multi-label classification label ranking 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brinker, K., Fürkranz, J., Hüllermeier, E.: A unified model for multi-label classification and ranking. In: Proceedings of the 17th European Conference on Artificial Intelligence (ECAI 2006), Riva del Garda, Italy, pp. 489–493 (2006)Google Scholar
  2. 2.
    Boutell, M., Luo, J., Shen, X., Brown, C.: Learning multi-label scene classification. Pattern Recognition 37, 1757–1771 (2004)CrossRefGoogle Scholar
  3. 3.
    Chiappe, A., Segovia, Y., Rincon, H.Y.: Toward an instructional design model based on learning objects. Educational Technology Research and Development 55, 671–681 (2007)CrossRefGoogle Scholar
  4. 4.
    Dagger, D., O’Connor, A., Lawless, S., Walsh, E., Wade, V.P.: Service-Oriented E-Learning Platforms: From Monolithic Systems to Flexible Services. IEEE Internet Computing 11(3), 28–35 (2007)CrossRefGoogle Scholar
  5. 5.
    Diplaris, S., Tsoumakas, G., Mitkas, P., Vlahavas, I.: Protein classification with multiple algorithms. In: Bozanis, P., Houstis, E.N. (eds.) PCI 2005. LNCS, vol. 3746, pp. 448–456. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    DublinCore Metadata Initiative (DCMI), (accessed 2007)
  7. 7.
    Gil, A., De la Prieta, F., López, V.F.: Hybrid Multiagent System for Automatic Object Learning Classification. In: Corchado, E., Graña Romay, M., Manhaes Savio, A. (eds.) HAIS 2010. LNCS, vol. 6077, pp. 61–68. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    IEEE Learning Technology Standard Committee (IEEE-LTSC). WG12 Learning Object Metadata, (accessed 2002)
  9. 9.
    Katakis, I., Tsoumakas, G., Vlahavas, I.: Multilabel Text Classification for Automated Tag Suggestion. In: Proceedings of the ECML/PKDD 2008 Discovery Challenge, Antwerp, Belgium (2008)Google Scholar
  10. 10.
    McCallum, A.: Multi-label text classification with a mixture model trained by em. In: Proceedings of the AAAI 1999 Workshop on Text Learning (1999)Google Scholar
  11. 11.
    Mika, P.: Ontologies are us: A unified model of social networks and semantics. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 522–536. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Li, L., Ogihara, M.: Detecting emotion in music. In: Proceedings of the International Symposium on Music Information Retrieval, Washington D.C., USA, pp. 239–240 (2003)Google Scholar
  13. 13.
  14. 14.
    Roth, V., Fischer, B.: Improved functional prediction of proteins by learning kernel combinations in multilabel settings. In: Proceeding of 2006 Workshop on Proba- bilistic Modeling and Machine Learning in Structural and Systems Biology (PMSB 2006), Tuusula, Finland (2006)Google Scholar
  15. 15.
    Tsoumakas, G., Katakis, I.: Multi-label classification: An overview. International Journal of Data Warehousing and Mining 3, 1–13 (2007)CrossRefGoogle Scholar
  16. 16.
    Tsoumakas, G., Vlahavas, I.: Random k-labelsets: An ensemble method for multilabel classification. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 406–417. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining multi-label data. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, 2nd edn., Springer, Heidelberg (2010)Google Scholar
  18. 18.
    Tsoumakas, G., Vilcek, J., Spyromitros, E., Vlahavas, I.: Mulan: A Java Library for Multi-Label Learning. Journal of Machine Learning Research (accepted for publication conditioned on minor revisions) (2010)Google Scholar
  19. 19.
    Trohidis, K., Tsoumakas, G., Kalliris, G., Vlahavas, I.: Multilabel classification of music into emotions. In: Proceedings of the 9th International Conference on Music Information Retrieval, ISMIR (2008)Google Scholar
  20. 20.
    Schapire, R.E., Singer, Y.: Boostexter, A boosting-based system for text categorization. Machine Learning 39(2/3), 135–168 (2000)zbMATHCrossRefGoogle Scholar
  21. 21.
    Ternier, S., Massart, D., Campi, A., Guinea, S., Ceri, E.: Duval, Interoperability for Searching Learning Object Repositories. The ProLearn Query Language. D-Lib Magazine 14 (January/February 2008), ISSN 1082-9873Google Scholar
  22. 22.
    Ternier, S., Verbert, K., Parra, G., Vandeputte, B., Klerkx, J., Duval, E., Ordoñez, V., Ochoa, X.: The Ariadne Infrastructure for Managing and Storing Metadata. IEEE Internet Computing 13(4), 18–25 (2009)CrossRefGoogle Scholar
  23. 23.
    Trohidis, K., Tsoumakas, G., Kalliris, G., Vlahavas, I.: Multilabel classification of music into emotions. In: Proceedings of the 9th International Conference on Music Information Retrieval, ISMIR (2008)Google Scholar
  24. 24.
    Wu, X., Zhang, L., Yu, Y.: Exploring Social Annotations for the Semantic Web. In: Proc. of WWW 2006 (2006)Google Scholar
  25. 25.
    Yang, Y.: An evaluation of statistical approaches to text categorization. Journal of Information Retrieval 1, 67–88 (1999)Google Scholar
  26. 26.
    Zhang, M.L., Zhou, Z.H.: Multi-label neural networks with applications to functional genomics and text categorization. IEEE Transactions on Knowledge and Data Engineering 18(10), 1338–1351 (2006)CrossRefGoogle Scholar
  27. 27.
    Zhang, M.L., Zhou, Z.H.: Ml-knn: A lazy learning approach to multi-label learning. Pattern Recognition 40, 2038–2048 (2007)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Vivian F. López Batista
    • 1
  • Fernando Prieta Pintado
    • 1
  • Ana Belén Gil
    • 1
  • Sara Rodríguez
    • 1
  • María N. Moreno
    • 1
  1. 1.Departamento Informática y AutomáticaUniversity of SalamancaSalamancaSpain

Personalised recommendations