Image Processing to Detect and Classify Situations and States of Elderly People

  • Ramón Reig-Bolaño
  • Pere Marti-Puig
  • Javier Bajo
  • Sara Rodríguez
  • Juan F. De Paz
  • Manuel P. Rubio
Conference paper
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 87)


Monitoring and tracking of elderly people using vision algorithms is an strategy gaining relevance to detect anomalous and potentially dangerous situations and react immediately. In general vision algorithms for monitoring and tracking are very costly and take a lot of time to respond, which is highly inconvenient since many applications can require action to be taken in real time. A multi-agent system (MAS) can establish a social model to automate the tasks carried out by the human experts during the process of analyzing images obtained by cameras. This study presents a detector agent integrated in a MAS that can process stereoscopic images to detect and classify situations and states of elderly people in geriatric residences by combining a series of novel techniques. We will talk in details about the combination of techniques used to perform the detection process, subdivided into human detection, human tracking ,and human behavior understanding, and where there is a case-based reasoning (CBR) model that allows the system to add reasoning capabilities.


Multi-Agent Systems stereo processing human detection Case Based Reasoning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rangarajan, A., Hsiao, I.T., Gindi, G.: A Bayesian Joint Mixture Framework for the Integration of Anatomical Information in Functional Image Reconstruction. Journal of Mathematical Imaging and Vision 12(3), 199–217 (2000), doi:10.1023/A:1008314015446zbMATHCrossRefGoogle Scholar
  2. 2.
    Wooldridge, M.: Introduction to MultiAgent Systems. John Wiley & Sons, Chichester (2002)Google Scholar
  3. 3.
    Barron, J., Fleet, D., Beauchemin, S.: Performance of optical Flow techniques. Int. J. Comput. Vision 12(1), 42–77 (1994)CrossRefGoogle Scholar
  4. 4.
    Collins, R.T., Lipton, A.J., Kanade, T., Fujiyoshi, H., Duggins, D., Tsin, Y., Tolliver, D., Enomoto, N., Hasegawa, O., Burt, P. and Wixson, L.: A system for video surveillance and monitoring, Carnegie Mellon Univ., Pittsburgh, PA, Tech. Rep., CMU-RI-TR-00-12 (2000)Google Scholar
  5. 5.
    Davies, E.R.: Lateral histograms for efficient object location: speed versus ambiguity. Pattern Recogn. Lett. 6(3), 189–198 (1987)CrossRefGoogle Scholar
  6. 6.
    Gallagher, M., Downs, T.: Visualization of learning in multilayer perceptron networks using principal component analysis. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 33, 28–34 (2003)CrossRefGoogle Scholar
  7. 7.
    Ivanciuc, O.: Applications of Support Vector Machines in Chemistry. In: Lipkowitz, K.B., Cundari, T.R. (eds.), pp. 291–400. John Wiley & Sons, Chichester (2007)Google Scholar
  8. 8.
    Kim, K., Chalidabhongse, T.H., Harwood, D., Davis, L.: Real-time foreground-background segmentation using codebook model. Real-Time Imaging 11(3), 172–185 (2005)CrossRefGoogle Scholar
  9. 9.
    Rodríguez, S., De Paz, J.F., Bajo, J., Tapia, D.I., Pérez, B.: Stereo-MAS: Multi-Agent System for Image Stereo Processing. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds.) IWANN 2009. LNCS, vol. 5517, pp. 1256–1263. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Dietterich, T.G.: Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation, 1895–1923 (1998)Google Scholar
  11. 11.
    Vapnik, V., Lerner, A.: Pattern Recognition Using Generalized Portrait Method, pp. 774–780 (1963)Google Scholar
  12. 12.
    Quteishat, A., Lim, C.P., Tweedale, J., Jain, L.C.: A neural network-based multi-agent classifier system. Neurocomputing 72(7-9), 1639–1647 (2009)CrossRefGoogle Scholar
  13. 13.
    Vuurpijl, L., Schomaker, L.: A framework for using multiple classifiers in a multiple-agent architecture. In: The Third International Workshop on Handwriting Analysis and Recognition, pp. 1–6 (1998)Google Scholar
  14. 14.
    Corchado, J.M., Bajo, J., Abraham, A.: GERAmI: Improving the delivery of health care. IEEE Intelligent Systems 3(2), 19–25 (2008)CrossRefGoogle Scholar
  15. 15.
    Cho, J.S., Yun, B.J., Ko, Y.H.: Intelligent video tracking based on fuzzy-reasoning segmentation. Neurocomputing 70(4-6), 657–664 (2007)Google Scholar
  16. 16.
    Chow, T.W.S., Rahman, M.K.M.: A new image classification technique using tree-structured regional features. Neurocomputing 70(4-6), 1040–1050 (2007)Google Scholar
  17. 17.
    Liu, H.Q., Jiao, L.C., Zhao, F.: Non-local spatial spectral clustering for image segmentation. Neurocomputing 74(1-3), 461–471 (2010)CrossRefGoogle Scholar
  18. 18.
    Allili, M.S., Ziou, D.: Object tracking in videos using adaptive mixture models and active contours. Neurocomputing 71(10-12), 2001–2011 (2008)CrossRefGoogle Scholar
  19. 19.
    Corchado, E., Arroyo, Á., Tricio, V.: Soft computing models to identify typical meteorological days. Logic Journal of the IGPL (2010)Google Scholar
  20. 20.
    Lima, L., Novais, P., Costa, R., Cruz, J., Neves, J.: Group decision making and Quality-of-Information in e-Health systems. Logic Journal of the IGPL (2010)Google Scholar
  21. 21.
    Sedano, J., Curiel, L., Corchado, E., de la Cal, E., Villar, J.R.: A soft computing method for detecting lifetime building thermal insulation failures. Integrated Computer-Aided Engineering 17(2), 103–115 (2010)Google Scholar
  22. 22.
    Prasad, T., Das, S., Roychoudhury, J., Abraham, A.: Implementation of a new hybrid methodology for fault signal classification using short -time fourier transform and support vector machines. In: Corchado, E., Novais, P., Analide, C., Sedano, J. (eds.) SOCO 2010. Advances in Intelligent and Soft Computing, vol. 73, pp. 219–225. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  23. 23.
    Yu, W.D., Liu, Y.C.: Hybridization of CBR and numeric soft computing techniques for mining of scarce construction databases. Automation in Construction 15(1), 33–46 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ramón Reig-Bolaño
    • 1
  • Pere Marti-Puig
    • 1
  • Javier Bajo
    • 2
  • Sara Rodríguez
    • 2
  • Juan F. De Paz
    • 2
  • Manuel P. Rubio
    • 2
  1. 1.Department of Digital and Information TechnologiesUniversity of VicBarcelonaSpain
  2. 2.Department of Computer ScienceUniversity of SalamancaSalamancaSpain

Personalised recommendations