Boolean Threshold Networks: Virtues and Limitations for Biological Modeling

  • Jorge G. T. Zañudo
  • Maximino Aldana
  • Gustavo Martínez-Mekler
Part of the Intelligent Systems Reference Library book series (ISRL, volume 11)


Boolean threshold networks have recently been proposed as useful tools to model the dynamics of genetic regulatory networks, and have been successfully applied to describe the cell cycles of S. cerevisiae and S. pombe. Threshold networks assume that gene regulation processes are additive. This, however, contrasts with the mechanism proposed by S. Kauffman in which each of the logic functions must be carefully constructed to accurately take into account the combinatorial nature of gene regulation. While Kauffman Boolean networks have been extensively studied and proved to have the necessary properties required for modeling the fundamental characteristics of genetic regulatory networks, not much is known about the essential properties of threshold networks. Here we study the dynamical properties of these networks with different connectivities, activator-repressor proportions, activator-repressor strengths and different thresholds. Special attention is paid to the way in which the threshold value affects the dynamical regime in which the network operates and the structure of the attractor landscape. We find that only for a very restricted set of parameters, these networks show dynamical properties consistent with what is observed in biological systems. The virtues of these properties and the possible problems related with the restrictions are discussed and related to earlier work that uses these kind of models.


Boolean Function Threshold Function Dynamical Regime Boolean Network Chaotic Regime 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Glass, L., Kauffman, S.A.: The logical analysis of continous, nonlinear biochemical control networks. J. Theor. Biol. 39, 103–129 (1973)CrossRefGoogle Scholar
  2. 2.
    Tyson, J.J., Chen, K.C., Novak, B.: Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr. Op. Cell Biol. 15, 221–231 (2003)CrossRefGoogle Scholar
  3. 3.
    Tyson, J.J., Chen, K.C., Novak, B.: Network dynamics and cell physiology. Nature Rev. Mol. Cell Biol., 908–916 (2001)Google Scholar
  4. 4.
    Bornholdt, S.: Systems biology: Less is more in modeling large genetic networks. Science 310(5747), 449–451 (2005)CrossRefGoogle Scholar
  5. 5.
    Albert, R., Othmer, H.G.: ...but no kinetic details are needed. SIAM News 36(10) (December 2003)Google Scholar
  6. 6.
    Wang, R., Albert, R.: Discrete dynamic modeling of cellular signaling networks. In: Johnson, B.M.L., Brand, L. (eds.) Methods in Enzymology 476: Computer Methods, pp. 281–306. Academic Press, London (2009)Google Scholar
  7. 7.
    Albert, R., Toroczkai, Z., Toroczkai, Z.: Boolean modeling of genetic networks. In: Ben-Naim, E., Frauenfelder, H., Toroczkai, Z. (eds.) Complex Networks. Springer, Heidelberg (2004)Google Scholar
  8. 8.
    Aldana-Gonzalez, M., Coppersmith, S., Kadanoff, L.P.: Boolean Dynamics with Random Couplings. In: Kaplan, E., Marsden, J.E., Sreenivasan, K.R. (eds.) Perspectives and Problems in Nonlinear Science. A celebratory volule in honor of Lawrence Sirovich. Springer Applied Mathematical Sciences Series, pp. 23–89 (2003)Google Scholar
  9. 9.
    Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22, 437–467 (1969)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kauffman, S.A.: The Origins of Order: Self-organization and selection in evolution. Oxford University Press, Oxford (1993)Google Scholar
  11. 11.
    Mendoza, L., Thieffry, D., Alvarez-Buylla, E.R.: Genetic control of flower morphogenesis in Arabidopsis Thaliana: a logical analysis. Bioinformatics 15, 593–606 (1999)CrossRefGoogle Scholar
  12. 12.
    Espionza-Soto, C., Padilla-Longoria, P., Alvarez-Buylla, E.R.: A gene regulatory network model for cell-fate determination during Arabidopsis Thaliana flower development that is robust and recovers experimental gene expression profiles. Plant Cell. 16, 2923–2939 (2004)CrossRefGoogle Scholar
  13. 13.
    Albert, R., Othmer, H.G.: The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. J. Theor. Biol. 23, 1–18 (2003)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Mendoza, L.: A network model for the control of the differentiation process in Th cells. BioSystems 84, 101–114 (2006)CrossRefGoogle Scholar
  15. 15.
    Li, F., Long, T., Lu, Y., Ouyang, Q., Tang, C.: The yeast cell-cycle network is robustly designed. Proc. Natl. Acad. Sci. USA 101, 4781–4786 (2004)CrossRefGoogle Scholar
  16. 16.
    Davidich, M.I., Bornholdt, S.: Boolean network model predicts cell cycle sequence of fission yeast. PLoS ONE 3(2), e1672 (2008)CrossRefGoogle Scholar
  17. 17.
    Perissi, V., Jepsen, K., Glass, C.K., Rosenfeld, M.G.: Deconstructing repression: evolving models of co-repressor action. Nature Reviews Genetics 11, 109–123 (2010)CrossRefGoogle Scholar
  18. 18.
    McCulloch, W., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 7, 115–133 (1943)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Hertz, J., Krogh, A., Palmer, R.G.: Introduction to the Theory of Neural Computation. Santa Fe Institute Studies in the Science of Complexity. Addison-Wesley, Reading (1991)Google Scholar
  20. 20.
    Bornholdt, S.: Boolean network models of cellular regulation: prospects and limitations. J. R. Soc. Interface 5, S85–S94 (2008)CrossRefGoogle Scholar
  21. 21.
    Kürten, K.E.: Critical phenomena in model neural networks. Phys. Lett. A 129, 157–160 (1988)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Rohlf, T., Bornholdt, S.: Criticality in random threshold networks: annealed approximation and beyond. Physica A 310, 245–259 (2002)MATHCrossRefGoogle Scholar
  23. 23.
    Aldana, M., Larralde, H.: Phase transitions in scale-free neural networks: Departure for the standard mean-field universality class. Phys. Rev. E 70, 066130 (2004)CrossRefGoogle Scholar
  24. 24.
    Rohlf, T.: Critical line in random threshold networks with inhomogeneous thresholds. Phys. Rev. E 78, 066118 (2008)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Kürten, K.E.: Correspondance between neural threshold networks and Kauffman Boolean cellular automata. J. Phys. A 21, L615-L619 (1988)Google Scholar
  26. 26.
    Derrida, B.: Dynamical phase transition in nonsymmetric spin glasses. J. Phys. A: Math. Gen. 20, L721-L725 (1987)Google Scholar
  27. 27.
    Szejka, A., Mihaljev, T., Drossel, B.: The phase diagram of random threshold networks. New Journal of Physics 10, 063009 (2008)CrossRefGoogle Scholar
  28. 28.
    Derrida, B., Pomeau, Y.: Random networks of automata: a simple annealed approximation. Europhys. Lett. 1(2), 45–49 (1986)MATHCrossRefGoogle Scholar
  29. 29.
    Moreira, A.A., Amaral, L.A.N.: Canalyzing Kauffman networks: Nonergodicity and its effect on their critical behavior. Phys. Rev. Lett. 94, 0218702 (2005)CrossRefGoogle Scholar
  30. 30.
    Serra, R., Villani, M., Graudenzi, A., Kauffman, S.A.: Why a simple model of genetic regulatory networks describes the distribution of avalanches in gene expression data. J. Theor. Biol. 246, 449–460 (2007)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Serra, R., Villani, M., Semeria, A.: Genetic network models and statistical properties of gene expression data in knock-out experiments. J. Theor. Biol. 227, 149–157 (2004)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Shmulevich, I., Kauffman, S., Aldana, M.: Eukaryotic cells are dynamically ordered or critical but not chaotic. Proc. Natl. Acad. Sci. USA 102, 13439–13444 (2005)CrossRefGoogle Scholar
  33. 33.
    Nykter, M., Price, N.D., Aldana, M., Ramley, S.A., Kauffman, S.A., Hood, L.E., Yli-Harja, O., Shmulevich, I.: Gene expression dynamics in the macrphage exhibit criticality. Proc. Natl. Acad. Sci. USA 105(6), 1897–1900 (2008)CrossRefGoogle Scholar
  34. 34.
    Balleza, E., Alvarez-Buylla, E.R., Chaos, A., Kauffman, S., Shmulevich, I., Aldana, M.: Critical dynamics in genetic regulatory networks: Examples from four kingdoms. PLoS ONE 3(6), e2456 (2008)CrossRefGoogle Scholar
  35. 35.
    Derrida, B., Weisbuch, G.: Evolution of overlaps between configurations in random Boolean networks. J. Phys. (Paris) 47, 1297–1303 (1986)Google Scholar
  36. 36.
    Aldana, M.: Boolean dynamics of networks with scale-free topology. Physica D 185, 45–66 (2003)MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Kesseli, J., Rämö, P., Yli-Harja, O.: Iterated maps for annealed Boolean networks. Phys. Rev. E 74, 046104 (2006)CrossRefGoogle Scholar
  38. 38.
    Greil, F., Drossel, B.: Kauffman networks with threshold functions. Eur. Phys. J. B 57, 109–113 (2007)CrossRefGoogle Scholar
  39. 39.
    Kauffman, S.A.: Requirements for evolvability in complex systems: orderly dynamics and frozen components. Physica D 42(1-3), 135–152 (1990)CrossRefGoogle Scholar
  40. 40.
    Aldana, M., Balleza, E., Kauffman, S.A., Resendiz, O.: Robustness and evolvability in genetic regulatory networks. J. Theor. Biol. 245, 433–448 (2007)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Gama-Castro1, S., Jiménez-Jacinto, V., Peralta-Gil, M., Santos-Zavaleta, A., Peñaloza-Spinola, M.I., Contreras-Moreira, B., Segura-Salazar, J., Muñiz-Rascado, L., Martínez-Flores, I., Salgado, H., Bonavides-Martínez, C., Abreu-Goodger, C., Rodríguez-Penagos, C., Miranda-Ríos, J., Morett, E., Merino, E., Huerta, A.M., Treviño-Quintanilla, L., Collado-Vides, J.: RegulonDB (version 6.0): gene regulation model of Escherichia coli K-12 beyond transcription, active (experimental) annotated promoters and Textpresso navigation. Nucleic Acids Research 36, D120-D124 (2008)Google Scholar
  42. 42.
    Braunewell, S., Bornholdt, S.: Superstability of the yeast cell-cycle dynamics: Ensuring causality in the presence of biochemical stochasticity. J. Theor. Biol. 245, 638–643 (2007)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Szejka, A., Drossel, B.: Evolution of Boolean networks under selection for a robust response to external inputs yields an extensive neutral space. Phys. Rev. E 81, 021908 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jorge G. T. Zañudo
    • 1
  • Maximino Aldana
    • 1
  • Gustavo Martínez-Mekler
    • 1
  1. 1.Instituto de Ciencias FísicasUniversidad Nacional Autónoma de MéxicoCuernavacaMéxico

Personalised recommendations