Advertisement

Parallelizing Compiler Framework and API for Power Reduction and Software Productivity of Real-Time Heterogeneous Multicores

  • Akihiro Hayashi
  • Yasutaka Wada
  • Takeshi Watanabe
  • Takeshi Sekiguchi
  • Masayoshi Mase
  • Jun Shirako
  • Keiji Kimura
  • Hironori Kasahara
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6548)

Abstract

Heterogeneous multicores have been attracting much attention to attain high performance keeping power consumption low in wide spread of areas. However, heterogeneous multicores force programmers very difficult programming. The long application program development period lowers product competitiveness. In order to overcome such a situation, this paper proposes a compilation framework which bridges a gap between programmers and heterogeneous multicores. In particular, this paper describes the compilation framework based on OSCAR compiler. It realizes coarse grain task parallel processing, data transfer using a DMA controller, power reduction control from user programs with DVFS and clock gating on various heterogeneous multicores from different vendors. This paper also evaluates processing performance and the power reduction by the proposed framework on a newly developed 15 core heterogeneous multicore chip named RP-X integrating 8 general purpose processor cores and 3 types of accelerator cores which was developed by Renesas Electronics, Hitachi, Tokyo Institute of Technology and Waseda University. The framework attains speedups up to 32x for an optical flow program with eight general purpose processor cores and four DRP(Dynamically Reconfigurable Processor) accelerator cores against sequential execution by a single processor core and 80% of power reduction for the real-time AAC encoding.

Keywords

Heterogeneous Multicore Parallelizing Compiler API 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bellens, P., Perez, J.M., Badia, R.M., Labarta, J.: Cellss: a programming model for the cell be architecture. In: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, SC 2006 (2009)Google Scholar
  2. 2.
    Dolbeau, R., Bihan, S., Bodin, F.: Hmpp(tm):a hybrid multi-core parallel programmingg environment. In: GPGPU 2007: Proceedings of the 1st Workshop on General Purpose Processing on Graphics Processing Units (2007)Google Scholar
  3. 3.
    Garland, M., Grand, S.L., Nickolls, J., Anderson, J., Hardwick, J., Morton, S., Phillips, E., Zhang, Y., Volkov, V.: Parallel computing experiences with cuda. IEEE Micro 28(4), 13–27 (2008)CrossRefGoogle Scholar
  4. 4.
    Kasahara, H., Honda, H., Mogi, A., Ogura, A., Fujiwara, K., Narita, S.: A multi-grain parallelizing compilation scheme for OSCAR (Optimally scheduled advanced multiprocessor). In: Proceedings of the Fourth International Workshop on Languages and Compilers for Parallel Computing, pp. 283–297 (August 1991)Google Scholar
  5. 5.
    Kasahara, H., Obata, M., Ishizaka, K.: Automatic coarse grain task parallel processing on SMP using openMP. In: Midkiff, S.P., Moreira, J.E., Gupta, M., Chatterjee, S., Ferrante, J., Prins, J.F., Pugh, B., Tseng, C.-W. (eds.) LCPC 2000. LNCS, vol. 2017, p. 189. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    kasahara.cs.waseda.ac.jp: Oscar-api v1.0, http://www.kasahara.cs.waseda.ac.jp/
  7. 7.
    khronos.org: Opencl, http://www.khronos.org/opencl/
  8. 8.
    Kimura, K., Mase, M., Mikami, H., Miyamoto, T., Shirako, J., Kasahara, H.: OSCAR API for real-time low-power multicores and its performance on multicores and SMP servers. In: Gao, G.R., Pollock, L.L., Cavazos, J., Li, X. (eds.) LCPC 2009. LNCS, vol. 5898, pp. 188–202. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Luebke, D., Harris, M., Govindaraju, N., Lefohn, A., Houston, M., Owens, J., Segal, M., Papakipos, M., Buck, I.: Gpgpu: General-purpose computation on graphics hardware. In: 2006 ACM/IEEE Conference on Supercomputing, SC 2006 (11 November 2006 through 17 November 2006 2006)Google Scholar
  10. 10.
    Luk, C., Hong, S., Kim, H.: Qilin: Exploiting parallelism on heterogeneous multiprocessors with adaptive mapping, microarchitecture. In: Proceedings of42th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-42 (2009)Google Scholar
  11. 11.
    Masayasu, Y., Takeshi, S., Toshiaki, T., Yasuhiko, K., Toshinori, I.: Naviengine 1, system lsi for smp-based car navigation systems. NEC TECHNICAL JOURNAL 2(4) (2007)Google Scholar
  12. 12.
    Mase, M., Onozaki, Y., Kimuraa, K., Kasahara, H.: Parallelizable c and its performance on low power high performance multicore processors. In: Proc. of 15th Workshop on Compilers for Parallel Computing (July 2010)Google Scholar
  13. 13.
    Nakajima, M., Yamamoto, T., Yamasaki, M., Hosoki, T., Sumita, M.: Low power techniques for mobile application socs based on integrated platform ”uniphier”. In: ASP-DAC 2007: Proceedings of the 2007 Asia and South Pacific Design Automation Conference (2007)Google Scholar
  14. 14.
    opencv.org: Opencv, http://opencv.org/
  15. 15.
    Pham, D., Asano, S., Bolliger, M., Day, M.N., Hofstee, H.P., Johns, C., Kahle, J., Kameyama, A., Keaty, J., Masubuchi, Y., Riley, M., Shippy, D., Stasiak, D., Suzuoki, M., Wang, M., Warnock, J., Weitzel, S., Wendel, D., Yamazaki, T., Yazawa, K.: The design and implementation of a first-generation cell processor. In: 2005 IEEE International Solid-State Circuits Conference, ISSCC (6 February 2005 through 10 February 2005 2005)Google Scholar
  16. 16.
    Shirako, J., Oshiyama, N., Wada, Y., Shikano, H., Kimura, K., Kasahara, H.: Compiler control power saving scheme for multi core processors. In: Ayguadé, E., Baumgartner, G., Ramanujam, J., Sadayappan, P. (eds.) LCPC 2005. LNCS, vol. 4339, pp. 362–376. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Torii, S., Suzuki, S., Tomonaga, H., Tokue, T., Sakai, J., Suzuki, N., Murakami, K., Hiraga, T., Shigemoto, K., Tatebe, Y., Obuchi, E., Kayama, N., Edahiro, M., Kusano, T., Nishi, N.: A 600mips 120mw 70 μ a leakage triple-cpu mobile application processor chip. In: ISSCC (2005)Google Scholar
  18. 18.
    Wada, Y., Hayashi, A., Masuura, T., Shirako, J., Nakano, H., Shikano, H., Kimura, K., Kasahara, H.: Parallelizing compiler cooperative heterogeneous multicore. In: Proceedings of Workshop on Software and Hardware Challenges of Manycore Platforms, SHCMP 2008 (June 2008)Google Scholar
  19. 19.
    Wolfe, M.: Implementing the pgi accelerator model. In: GPGPU 2010: Proceedings of the 3rd Workshop on General-Purpose Computation on Graphics Processing Units (2010)Google Scholar
  20. 20.
    Yoshida, Y., Kamei, T., Hayase, K., Shibahara, S., Nishii, O., Hattori, T., Hasegawa, A., Takada, M., Irie, N., Uchiyama, K., Odaka, T., Takada, K., Kimura, K., Kasahara, H.: A 4320mips four-processor core smp/amp with individually managed clock frequency for low power consumption. In: IEEE International Solid-State Circuits Conference, ISSCC (February 2007)Google Scholar
  21. 21.
    Yuyama, Y., Ito, M., Kiyoshige, Y., Nitta, Y., Matsui, S., Nishii, O., Hasegawa, A., Ishikawa, M., Yamada, T., Miyakoshi, J., Terada, K., Nojiri, T., Satoh, M., Mizuno, H., Uchiyama, K., Wada, Y., Kimura, K., Kasahara, H., Maejima, H.: A 45nm 37.3gops/w heterogeneous multi-core soc. In: IEEE International Solid-State Circuits Conference, ISSCC (February 2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Akihiro Hayashi
    • 1
  • Yasutaka Wada
    • 1
  • Takeshi Watanabe
    • 1
  • Takeshi Sekiguchi
    • 1
  • Masayoshi Mase
    • 1
  • Jun Shirako
    • 1
  • Keiji Kimura
    • 1
  • Hironori Kasahara
    • 1
  1. 1.Department of Computer Science and EngineeringWaseda UniversityShinjuku-kuJapan

Personalised recommendations