Soundness-Preserving Refinements of Service Compositions

  • Kees M. van Hee
  • Arjan J. Mooij
  • Natalia Sidorova
  • Jan Martijn van der Werf
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6551)


Soundness is one of the well-studied properties of processes; it denotes that a final state can be reached from every state that is reachable from the initial state. Soundness-preserving refinements are important for enabling the compositional design of systems.

In this paper we concentrate on refinements of service compositions. We model service compositions using Petri nets, and consider specific pairs of places that belong to different services. Starting from a sound service composition, we show how to check whether such a pair of places can be refined by another sound service composition, so that soundness is preserved through the refinement.


Service composition refinement Petri net soundness verification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    van der Aalst, W.M.P.: Verification of workflow nets. In: Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  2. 2.
    van der Aalst, W.M.P., van Hee, K.M., Massuthe, P., Sidorova, N., van der Werf, J.M.E.M.: Compositional service trees. In: Franceschinis, G., Wolf, K. (eds.) PETRI NETS 2009. LNCS, vol. 5606, pp. 283–302. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    van der Aalst, W.M.P., Lohmann, N., Massuthe, P., Stahl, C., Wolf, K.: Multiparty contracts: Agreeing and implementing interorganizational processes. The Computer Journal (2009)Google Scholar
  4. 4.
    Brauer, W., Gold, R., Vogler, W.: A survey of behaviour and equivalence preserving refinements of Petri nets. In: ATPN 1990. LNCS, vol. 483, pp. 1–46 (1991)Google Scholar
  5. 5.
    Bravetti, M., Tennenholtz, M.: Contract based multi-party service composition. In: Arbab, F., Sirjani, M. (eds.) FSEN 2007. LNCS, vol. 4767, pp. 207–222. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Brinksma, E.: A theory for the derivation of tests. In: Protocol Specification, Testing, and Verification VIII, pp. 63–74. North-Holland, Amsterdam (1988)Google Scholar
  7. 7.
    Castagna, G., Dezani-Ciancaglini, M., Giachino, E., Padovani, L.: Foundations of session types. In: PPDP 2009, pp. 219–230. ACM, New York (2009)Google Scholar
  8. 8.
    Chow, Y.S., Robbins, H., Siegmund, D.: The Theory of Optimal Stopping: Great Expectations. Houghton Mifflin Company (1971)Google Scholar
  9. 9.
    Clarke, E., Emerson, E.: Design and synthesis of synchronization skeletons using branching-time temporal logic. In: Logic of Programs 1981. LNCS, vol. 131, pp. 52–71 (1982)Google Scholar
  10. 10.
    Dill, D.L.: Trace Theory for Automatic Hierarchical Verification of Speed-Independent Circuits. MIT Press, Cambridge (1989)Google Scholar
  11. 11.
    Genrich, H.J., Thieler-Mevissen, G.: The calculus of facts. In: MFCS 1976. LNCS, vol. 45, pp. 588–595 (1976)Google Scholar
  12. 12.
    van Hee, K.M., Sidorova, N., Voorhoeve, M.: Soundness and separability of workflow nets in the stepwise refinement approach. In: van der Aalst, W.M.P., Best, E. (eds.) ATPN 2003. LNCS, vol. 2679, pp. 337–356. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Kindler, E.: A compositional partial order semantics for Petri net components. In: ATPN 1997. LNCS, vol. 1248, pp. 235–252 (1997)Google Scholar
  14. 14.
    Kindler, E., Martens, A., Reisig, W.: Inter-operability of workflow applications: Local criteria for global soundness. In: van der Aalst, W.M.P., Desel, J., Oberweis, A. (eds.) BPM 2000. LNCS, vol. 1806, pp. 235–253. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  15. 15.
    Larsen, K.G., Thomsen, B.: A modal process logic. In: LICS 1988, pp. 203–210 (1988)Google Scholar
  16. 16.
    Lohmann, N., Massuthe, P., Wolf, K.: Operating guidelines for finite-state services. In: Kleijn, J., Yakovlev, A. (eds.) ATPN 2007. LNCS, vol. 4546, pp. 321–341. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Malik, R., Streader, D., Reeves, S.: Conflicts and fair testing. Journal of Foundations of Computer Science 17(4), 797–813 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Massuthe, P., Reisig, W., Schmidt, K.: An Operating Guideline Approach to the SOA. Annals of Mathematics, Computing & Teleinformatics 1(3), 35–43 (2005)Google Scholar
  19. 19.
    Mooij, A.J., Parnjai, J., Stahl, C., Voorhoeve, M.: Constructing substitutable services using operating guidelines and maximal controllers (2010) (accepted for WS-FM 2010)Google Scholar
  20. 20.
    Mooij, A.J., Stahl, C., Voorhoeve, M.: Relating fair testing and accordance for service replaceability. Journal of Logic and Algebraic Programming 79(3–5), 233–244 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Mooij, A.J., Voorhoeve, M.: Proof techniques for adapter generation. In: Bruni, R., Wolf, K. (eds.) WS-FM 2008. LNCS, vol. 5387, pp. 207–223. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  22. 22.
    Mooij, A.J., Voorhoeve, M.: Trading off concurrency to generate behavioral adapters. In: ACSD 2009, pp. 109–118. IEEE, Los Alamitos (2009)Google Scholar
  23. 23.
    Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the IEEE 77(4), 541–580 (1989)CrossRefGoogle Scholar
  24. 24.
    Rensink, A., Vogler, W.: Fair testing. Information and Computation 205(2), 125–198 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Schmidt, K.: LoLA: A low level analyser. In: Nielsen, M., Simpson, D. (eds.) ATPN 2000. LNCS, vol. 1825, pp. 465–474. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  26. 26.
    Siegeris, J., Zimmermann, A.: Workflow model compositions preserving relaxed soundness. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 177–192. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  27. 27.
    Stahl, C., Wolf, K.: Deciding service composition and substitutability using extended operating guidelines. Data Knowl. Eng. 68(9), 819–833 (2009)CrossRefGoogle Scholar
  28. 28.
    Suzuki, I., Murata, T.: A method for stepwise refinement and abstraction of Petri nets. Journal of Computer and System Sciences 27, 51–76 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Vogler, W.: Modular Construction and Partial Order Semantics of Petri Nets. LNCS, vol. 625. Springer, Heidelberg (1992)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Kees M. van Hee
    • 1
  • Arjan J. Mooij
    • 1
  • Natalia Sidorova
    • 1
  • Jan Martijn van der Werf
    • 1
  1. 1.Department of Mathematics and Computer ScienceTechnische Universiteit EindhovenThe Netherlands

Personalised recommendations