Simplified Computation and Generalization of the Refined Process Structure Tree

  • Artem Polyvyanyy
  • Jussi Vanhatalo
  • Hagen Völzer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6551)


A business process is often modeled using some kind of a directed flow graph, which we call a workflow graph. The Refined Process Structure Tree (RPST) is a technique for workflow graph parsing, i.e., for discovering the structure of a workflow graph, which has various applications. In this paper, we provide two improvements to the RPST. First, we propose an alternative way to compute the RPST that is simpler than the one developed originally. In particular, the computation reduces to constructing the tree of the triconnected components of a workflow graph in the special case when every node has at most one incoming or at most one outgoing edge. Such graphs occur frequently in applications. Secondly, we extend the applicability of the RPST. Originally, the RPST was applicable only to graphs with a single source and single sink such that the completed version of the graph is biconnected. We lift both restrictions. Therefore, the RPST is then applicable to arbitrary directed graphs such that every node is on a path from some source to some sink. This includes graphs with multiple sources and/or sinks and disconnected graphs.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. Data & Knowledge Engineering 68(9), 793–818 (2009)CrossRefGoogle Scholar
  2. 2.
    García-Bañuelos, L.: Pattern identification and classification in the translation from BPMN to BPEL. In: Chung, S. (ed.) OTM 2008, Part I. LNCS, vol. 5331, pp. 436–444. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Polyvyanyy, A., García-Bañuelos, L., Weske, M.: Unveiling hidden unstructured regions in process models. In: Meersman, R., Dillon, T., Herrero, P. (eds.) OTM 2009. LNCS, vol. 5870, pp. 340–356. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Fahland, D., Favre, C., Jobstmann, B., Koehler, J., Lohmann, N., Völzer, H., Wolf, K.: Instantaneous soundness checking of industrial business process models. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 278–293. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Johnson, R., Pearson, D., Pingali, K.: The program structure tree: Computing control regions in linear time. In: PLDI, pp. 171–185 (1994)Google Scholar
  6. 6.
    Johnson, R.: Efficient Program Analysis using Dependence Flow Graphs. PhD thesis, Cornell University, Ithaca, NY, USA (1995)Google Scholar
  7. 7.
    Vanhatalo, J., Völzer, H., Leymann, F.: Faster and more focused control-flow analysis for business process models though SESE decomposition. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 43–55. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Küster, J.M., Gerth, C., Förster, A., Engels, G.: Detecting and resolving process model differences in the absence of a change log. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 244–260. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Polyvyanyy, A., Smirnov, S., Weske, M.: The triconnected abstraction of process models. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 229–244. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Vanhatalo, J., Völzer, H., Leymann, F., Moser, S.: Automatic workflow graph refactoring and completion. In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364, pp. 100–115. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Battista, G.D., Tamassia, R.: On-line maintenance of triconnected components with SPQR-trees. Algorithmica 15(4), 302–318 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gschwind, T., Koehler, J., Wong, J.: Applying patterns during business process modeling. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 4–19. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Tarjan, R.E., Valdes, J.: Prime subprogram parsing of a program. In: POPL 1980, pp. 95–105. ACM, New York (1980)Google Scholar
  14. 14.
    Gutwenger, C., Mutzel, P.: A linear time implementation of SPQR-trees. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 77–90. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Hopcroft, J., Tarjan, R.E.: Dividing a graph into triconnected components. SIAM J. Comput. 2(3), 135–158 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Polyvyanyy, A., Vanhatalo, J., Völzer, H.: Simplified computation and generalization of the refined process structure tree. Technical Report RZ 3745, IBM (2009)Google Scholar
  17. 17.
    Curran, T., Keller, G., Ladd, A.: SAP R/3 Business Blueprint: Understanding the Business Process Reference Model. Prentice-Hall, Inc., Upper Saddle River (1997)Google Scholar
  18. 18.
    Vanhatalo, J.: Process structure trees: Decomposing a business process model into a hierarchy of single-entry-single-exit fragments. PhD thesis, University of Stuttgart, Germany, vol. 1573, — Verlag im Internet (July 2009) ISBN: 978-3-86624-473-3 Google Scholar
  19. 19.
    Valdes, J.: Parsing Flowcharts and Series-Parallel Graphs. PhD thesis, Stanford University, CA, USA (1978)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Artem Polyvyanyy
    • 1
  • Jussi Vanhatalo
    • 2
  • Hagen Völzer
    • 3
  1. 1.Hasso Plattner InstitutePotsdamGermany
  2. 2.UBS AG, PostfachZurichSwitzerland
  3. 3.IBM Research – ZurichRüschlikonSwitzerland

Personalised recommendations