Geobacillus Activities in Soil and Oil Contamination Remediation

Part of the Soil Biology book series (SOILBIOL, volume 27)


The genus Geobacillus was created by Nazina et al. (Int J Syst Evol Microbiol 51:433–446, 2001) to accommodate thermophilic, Gram-positive, endospore-forming bacteria originally belonging to the genus Bacillus, plus other new species of hydrocarbon-oxidizing organisms isolated from heated, hydrocarbon-rich environments. Proposals for further new Geobacillus spp. with the ability to grow at elevated temperatures and degrade hydrocarbons, followed. In this chapter we discuss the characteristics, growth, metabolism and hydrocarbon degradation abilities of some members of Geobacillus. In addition, their general genetic traits, geographical distribution and potentials for use in hydrocarbon-contaminated soil remediation processes are presented.


  1. Ash C, Farrow JAE, Wallbanks S, Collins MD (1991) Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences. Lett Appl Microbiol 13:202–206CrossRefGoogle Scholar
  2. Banat IM, Marchant R, Rahman TJ (2004) Geobacillus debilis sp. nov., a novel obligately thermophilic bacterium isolated from a cool soil environment and reassignment of Bacillus pallidus to Geobacillus pallidus comb. nov. Int J Syst Evol Microbiol 54:2197–2201PubMedCrossRefGoogle Scholar
  3. Caccamo D, Gugliandolo C, Stackebrandt E, Maugeri TL (2000) Bacillus vulcani sp. nov., a novel thermophilic species isolated from a shallow marine hydrothermal vent. Int J Syst Evol Microbiol 50:2009–2012PubMedCrossRefGoogle Scholar
  4. Feitkenhauer H, Schnicke S, Müller R, Märkl H (2003) Kinetic parameters of continuous cultures of Bacillus thermoleovorans sp. A2 degrading phenol at 65°C. J Biotechnol 103:129–135PubMedCrossRefGoogle Scholar
  5. Feng L, Wang W, Cheng J, Ren Y, Zhao G, Gao C, Tang Y, Liu X, Han W, Peng X, Liu R, Wang L (2007) Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir. Proc Natl Acad Sci USA 104:5602–5607PubMedCrossRefGoogle Scholar
  6. Griffin DW (2007) Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clin Microbiol Rev 20:459–477PubMedCrossRefGoogle Scholar
  7. Haft DH, Selengut J, Mongodin EF, Nelson KE (2005) A guild of 45 CRISPR-Associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput Biol 1:474–483CrossRefGoogle Scholar
  8. Ishii Y, Konishi J, Okada H, Hirasawa K, Onaka T, Suzuki M (2000) Operon structure and functional analysis of the genes encoding thermophilic desulfurizing enzymes of Paenibacillus sp A11-2. Biochem Biophys Res Commun 270:81–88PubMedCrossRefGoogle Scholar
  9. Kim J-J, Masui R, Kuramitsu S, Seo J-H, Kim K, Sung M-H (2008) Characterization of growth-supporting factors produced by Geobacillus toebii for the commensal thermophile Symbiobacterium toebii. J Microbiol Biotechnol 18:490–496PubMedGoogle Scholar
  10. Marchant R, Banat IM, Rahman TJ, Berzano M (2002a) What are high-temperature bacteria doing in cold environments? Trends Microbiol 10:120–121PubMedCrossRefGoogle Scholar
  11. Marchant R, Banat IM, Rahman TJ, Berzano M (2002b) The frequency and characteristics of highly thermophilic bacteria in cool soil environments. Environ Microbiol 4:595–602PubMedCrossRefGoogle Scholar
  12. Marchant R, Sharkey FH, Banat IM, Rahman TJ, Perfumo A (2006) The degradation of n-hexadecane in soil by thermophilic geobacilli. FEMS Microbiol Ecol 56:44–54PubMedCrossRefGoogle Scholar
  13. Marchant R, Franzetti A, Pavlostathis SG, Okutman Tas D, Erdbrűgger I, Űnyayar A, Mazmanci MA, Banat IM (2008) Thermophilic bacteria in cool temperate soil environments: are they metabolically active or continually added by global atmospheric transport? Appl Microbiol Biotechnol 5:841–852CrossRefGoogle Scholar
  14. Nazina TN, Tourova TP, Poltaraus AB, Novikova EV, Grigoryan AA, Ivanova AE, Lysenko AM, Petrunyaka VV, Osipov GA, Belyaev SS, Ivanov MV (2001) Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans. Int J Syst Evol Microbiol 51:433–446PubMedGoogle Scholar
  15. Nazina TN, Lebedeva EV, Poltaraus AB, Tourova TP, Grigoryan AA, Sokolova DS, Lysenko AM, Osipov GA (2004) Geobacillus gargensis sp. nov., a novel thermophile from a hot spring, and the reclassification of Bacillus vulcani as Geobacillus vulcani comb. nov. Int J Syst Evol Microbiol 54:2019–2024PubMedCrossRefGoogle Scholar
  16. Newmark RL, Aines RD (1998) They all like it hot: faster cleanup of contaminated soil and groundwater. Sci Technol Rev May:4–11Google Scholar
  17. Pavlostathis SG, Marchant R, Banat IM, Ternan N, McMullan G (2006) High growth rate and substrate exhaustion results in rapid cell death and lysis in the thermophilic bacterium Geobacillus thermoleovorans. Biotechnol Bioeng 95:84–95PubMedCrossRefGoogle Scholar
  18. Perfumo A, Banat IM, Marchant R, Vezzulli L (2007) Thermally enhanced approaches for bioremediation of hydrocarbon-contaminated soils. Chemosphere 66:179–184PubMedCrossRefGoogle Scholar
  19. Ratajczak A, Geiβdörfer W, Hillen W (1998a) Alkane hydroxylase from Acinetobacter sp. strain ADP-1 is encoded by alkM and belongs to a new family of bacterial integral membrane hydrocarbon hydroxylases. Appl Environ Microbiol 64:1175–1179PubMedGoogle Scholar
  20. Ratajczak A, Geiβdörfer W, Hillen W (1998b) Expression of the alkane hydroxlase from Acinetobacter sp. strain ADP-1 is induced by a broad range of n-alkanes and requires the transcriptional activator alkR. J Bacteriol 180:5822–5827PubMedGoogle Scholar
  21. Rhee SK, Lee SG, Hong SP, Choi YH, Park JH, Kim CJ, Sung MH (2000) A novel microbial interaction: obligate commensalism between a new gram-negative thermophile and a thermophilic Bacillus strain. Extremophiles 4:131–136PubMedCrossRefGoogle Scholar
  22. Rhee SK, Jeon CO, Bae JW, Kim K, Song JJ, Kim JJ, Lee SG, Kim HI, Hong SP, Choi YH, Kim SM, Sung MH (2002) Characterization of Symbiobacterium toebii, an obligate commensal thermophile isolated from compost. Extremophiles 6:57–64PubMedCrossRefGoogle Scholar
  23. Schäffer C, Franck WL, Scheberl A, Kosma P, McDermott TR, Messner P (2004) Classification of isolates from locations in Austria and Yellowstone National Park as Geobacillus tepidamans sp. nov. Int J Syst Evol Microbiol 54:2361–2368PubMedCrossRefGoogle Scholar
  24. Scholz T, Demharter W, Hensel R, Kandler O (1987) Bacillus pallidus sp. nov., a new thermophilic species from sewage. Syst Appl Microbiol 9:91–96Google Scholar
  25. Sood N, Lal B (2008) Isolation and characterization of a potential paraffin-wax degrading thermophilic bacterial strain Geobacillus kaustophilus TERI NSM for application in oil wells with paraffin deposition problems. Chemosphere 70:1445–1451PubMedCrossRefGoogle Scholar
  26. Sung MH, Kim H, Bae JW, Rhee SK, Jeon CO, Kim K, Kim JJ, Hong SP, Lee SG, Yoon JH, Park YH, Baek DH (2002) Geobacillus toebii sp. nov., a novel thermophilic bacterium isolated from hay compost. Int J Syst Evol Microbiol 52:2251–2255PubMedCrossRefGoogle Scholar
  27. Takami H, Nishi S, Lu J, Shinamura S, Takaki Y (2004a) Genomic characterization of thermophilic Geobacillus species isolated from the deepest sea mud of the Mariana Trench. Extremophiles 8:351–356PubMedCrossRefGoogle Scholar
  28. Takami H, Takaki Y, Chee GJ, Nishi S, Shinamura S, Suzuki H, Matsui S, Uchiyama I (2004b) Thermoadaptation trait revealed by the genome sequence of thermophilic Geobacillus kaustophilus. Nucleic Acids Res 32:6292–6303PubMedCrossRefGoogle Scholar
  29. van Beilen JB, Panke S, Lucchini S, Franchini AG, Röthlisberger M, Witholt B (2001) Analysis of Pseudomonas putida alkane degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk-genes. Microbiology 147:1621–1630PubMedGoogle Scholar
  30. Whyte LG, Smits TH, Labbe D, Witholt B, Greer CW, van Beilen JB (2002) Gene cloning and characterisation of multiple alkane hydroxylase systems in Rhodococcus strains Q15 and NRR1. Appl Environ Microbiol 68:5933–5942PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.School of Biomedical Sciences, Faculty of Life and Health SciencesUniversity of UlsterColeraineUK

Personalised recommendations