Advertisement

Impossibility of Blind Signatures from One-Way Permutations

  • Jonathan Katz
  • Dominique Schröder
  • Arkady Yerukhimovich
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6597)

Abstract

A seminal result in cryptography is that signature schemes can be constructed (in a black-box fashion) from any one-way function. The minimal assumptions needed to construct blind signature schemes, however, have remained unclear. Here, we rule out black-box constructions of blind signature schemes from one-way functions. In fact, we rule out constructions even from a random permutation oracle, and our results hold even for blind signature schemes for 1-bit messages that achieve security only against honest-but-curious behavior.

Keywords

Signature Scheme Random Oracle Blind Signature Valid Signature Oblivious Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abe, M.: A secure three-move blind signature scheme for polynomially many signatures. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 136–151. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-preserving signatures and commitments to group elements. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)Google Scholar
  3. 3.
    Abe, M., Ohkubo, M.: A framework for universally composable non-committing blind signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 435–450. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Barak, B., Mahmoody-Ghidary, M.: Lower bounds on signatures from symmetric primitives. In: 48th Annual Symposium on Foundations of Computer Science (FOCS), pp. 680–688. IEEE, Los Alamitos (2007)CrossRefGoogle Scholar
  5. 5.
    Barak, B., Mahmoody-Ghidary, M.: Merkle puzzles are optimal — an o(n 2)-query attack on any key exchange from a random oracle. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 374–390. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-RSA-inversion problems and the security of Chaum’s blind signature scheme. Journal of Cryptology 16(3), 185–215 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on the gap-diffie-hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Camenisch, J.L., Koprowski, M., Warinschi, B.: Efficient blind signatures without random oracles. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 134–148. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Camenisch, J.L., Neven, G., Shelat, A.: Simulatable adaptive oblivious transfer. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 573–590. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Chaum, D.: Blind signatures for untraceable payments. In: Advances in Cryptology — Crypto 1982, pp. 199–203. Plenum Press, New York (1983)Google Scholar
  11. 11.
    Fiore, D., Schröder, D.: Uniqueness is a different story: Impossibility of verifiable random functions from trapdoor permutations. Cryptology ePrint Archive, Report 2010/648 (2010), http://eprint.iacr.org/2010/648
  12. 12.
    Fischlin, M.: Round-optimal composable blind signatures in the common reference string model. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 60–77. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Fischlin, M., Schröder, D.: Security of blind signatures under aborts. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 297–316. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Fischlin, M., Schröder, D.: On the impossibility of three-move blind signature schemes. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 197–215. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Hazay, C., Katz, J., Koo, C.-Y., Lindell, Y.: Concurrently-secure blind signatures without random oracles or setup assumptions. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 323–341. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Horvitz, O., Katz, J.: Universally-composable two-party computation in two rounds. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 111–129. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way permutations. In: 21st Annual ACM Symposium on Theory of Computing (STOC), pp. 44–61. ACM Press, New York (1989)Google Scholar
  18. 18.
    Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: Black-box constructions for secure computation. In: 38th Annual ACM Symposium on Theory of Computing (STOC), pp. 99–108. ACM Press, New York (2006)Google Scholar
  19. 19.
    Juels, A., Luby, M., Ostrovsky, R.: Security of blind digital signatures. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 150–164. Springer, Heidelberg (1997)Google Scholar
  20. 20.
    Kiayias, A., Zhou, H.-S.: Equivocal blind signatures and adaptive UC-security. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 340–355. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic applications. In: 21st Annual ACM Symposium on Theory of Computing (STOC), pp. 33–43. ACM Press, New York (1989)Google Scholar
  22. 22.
    Okamoto, T.: Efficient blind and partially blind signatures without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 80–99. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. Journal of Cryptology 13(3), 361–396 (2000)CrossRefzbMATHGoogle Scholar
  24. 24.
    Reingold, O., Trevisan, L., Vadhan, S.P.: Notions of reducibility between cryptographic primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  25. 25.
    Rompel, J.: One-way functions are necessary and sufficient for secure signatures. In: 22nd Annual ACM Symposium on Theory of Computing (STOC), pp. 387–394. ACM Press, New York (1990)Google Scholar
  26. 26.
    Schröder, D.: On the Complexity of Blind Signatures. PhD thesis, Darmstadt University of Technology (2010)Google Scholar

Copyright information

© International Association for Cryptologic Research 2011

Authors and Affiliations

  • Jonathan Katz
    • 1
  • Dominique Schröder
    • 2
  • Arkady Yerukhimovich
    • 1
  1. 1.University of MarylandUSA
  2. 2.Darmstadt University of TechnologyGermany

Personalised recommendations