Limits on the Power of Zero-Knowledge Proofs in Cryptographic Constructions

  • Zvika Brakerski
  • Jonathan Katz
  • Gil Segev
  • Arkady Yerukhimovich
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6597)


For over 20 years, black-box impossibility results have been used to argue the infeasibility of constructing certain cryptographic primitives (e.g., key agreement) from others (e.g., one-way functions). A widely recognized limitation of such impossibility results, however, is that they say nothing about the usefulness of (known) nonblack-box techniques. This is unsatisfying, as we would at least like to rule out constructions using the set of techniques we have at our disposal.

With this motivation in mind, we suggest a new framework for black-box constructions that encompasses constructions with a nonblack-box flavor: specifically, those that rely on zero-knowledge proofs relative to some oracle. We show that our framework is powerful enough to capture the Naor-Yung/Sahai paradigm for building a (shielding) CCA-secure public-key encryption scheme from a CPA-secure one, something ruled out by prior black-box separation results. On the other hand, we show that several black-box impossibility results still hold even in a setting that allows for zero-knowledge proofs.


  1. 1.
    Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing polynomials and their applications. Computational Complexity 15(2), 115–162 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Barak, B., Mahmoody-Ghidary, M.: Merkle puzzles are optimal — an o(n 2) -query attack on any key exchange from a random oracle. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 374–390. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Beaver, D.: Correlated pseudorandomness and the complexity of private computations. In: 28th Annual ACM Symposium on Theory of Computing (STOC), pp. 479–488. ACM Press, New York (1996)Google Scholar
  4. 4.
    Bellare, M., Goldwasser, S.: New paradigms for digital signatures and message authentication based on non-interactive zero knowledge proofs. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 194–211. Springer, Heidelberg (1990)Google Scholar
  5. 5.
    Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM Journal on Computing 30(2), 391–437 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Feige, U., Fiat, A., Shamir, A.: Zero-knowledge proofs of identity. Journal of Cryptology 1(2), 77–94 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs under general assumptions. SIAM Journal on Computing 29(1), 1–28 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Fischlin, M.: On the impossibility of constructing non-interactive statistically-secret protocols from any trapdoor one-way function. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 79–95. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Fischlin, M.: Round-optimal composable blind signatures in the common reference string model. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 60–77. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Gennaro, R., Gertner, Y., Katz, J., Trevisan, L.: Bounds on the efficiency of generic cryptographic constructions. SIAM Journal on Computing 35(1), 217–246 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Gertner, Y., Malkin, T.G., Myers, S.: Towards a separation of semantic and CCA security for public key encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 434–455. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Haitner, I., Hoch, J.J., Reingold, O., Segev, G.: Finding collisions in interactive protocols — a tight lower bound on the round complexity of statistically-hiding commitments. In: 48th Annual Symposium on Foundations of Computer Science (FOCS), pp. 669–679. IEEE, Los Alamitos (2007)CrossRefGoogle Scholar
  13. 13.
    Haitner, I., Hoch, J.J., Segev, G.: A linear lower bound on the communication complexity of single-server private information retrieval. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 445–464. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM Journal on Computing 28(4), 1364–1396 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way permutations. In: 21st Annual ACM Symposium on Theory of Computing (STOC), pp. 44–61. ACM Press, New York (1989)Google Scholar
  16. 16.
    Lindell, Y.: A simpler construction of CCA2-secure public-key encryption under general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 241–254. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Naor, M., Ostrovsky, R., Venkatesan, R., Yung, M.: Perfect zero-knowledge arguments for NP using any one-way permutation. Journal of Cryptology 11(2), 87–108 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attacks. In: 22nd Annual ACM Symposium on Theory of Computing (STOC), pp. 427–437. ACM Press, New York (1990)Google Scholar
  19. 19.
    Reingold, O., Trevisan, L., Vadhan, S.P.: Notions of reducibility between cryptographic primitives. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 1–20. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In: 40th Annual Symposium on Foundations of Computer Science (FOCS), pp. 543–553. IEEE, Los Alamitos (1999)Google Scholar
  21. 21.
    Simon, D.R.: Findings collisions on a one-way street: Can secure hash functions be based on general assumptions? In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 334–345. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2011

Authors and Affiliations

  • Zvika Brakerski
    • 1
  • Jonathan Katz
    • 2
  • Gil Segev
    • 3
  • Arkady Yerukhimovich
    • 2
  1. 1.Weizmann Institute of ScienceRehovotIsrael
  2. 2.University of MarylandCollege ParkUSA
  3. 3.Microsoft ResearchMountain ViewUSA

Personalised recommendations