PCPs and the Hardness of Generating Private Synthetic Data

  • Jonathan Ullman
  • Salil Vadhan
Conference paper

DOI: 10.1007/978-3-642-19571-6_24

Part of the Lecture Notes in Computer Science book series (LNCS, volume 6597)
Cite this paper as:
Ullman J., Vadhan S. (2011) PCPs and the Hardness of Generating Private Synthetic Data. In: Ishai Y. (eds) Theory of Cryptography. TCC 2011. Lecture Notes in Computer Science, vol 6597. Springer, Berlin, Heidelberg


Assuming the existence of one-way functions, we show that there is no polynomial-time, differentially private algorithm \(\mathcal{A}\) that takes a database D ∈ ({0,1}d)n and outputs a “synthetic database” \(\widehat{D}\) all of whose two-way marginals are approximately equal to those of D. (A two-way marginal is the fraction of database rows x ∈ {0,1}d with a given pair of values in a given pair of columns). This answers a question of Barak et al. (PODS ‘07), who gave an algorithm running in time poly(n,2d).

Our proof combines a construction of hard-to-sanitize databases based on digital signatures (by Dwork et al., STOC ‘09) with encodings based on probabilistically checkable proofs.

We also present both negative and positive results for generating “relaxed” synthetic data, where the fraction of rows in D satisfying a predicate c are estimated by applying c to each row of \(\widehat{D}\) and aggregating the results in some way.


privacy digital signatures inapproximability constraint satisfaction problems probabilistically checkable proofs 
Download to read the full conference paper text

Copyright information

© International Association for Cryptologic Research 2011

Authors and Affiliations

  • Jonathan Ullman
    • 1
  • Salil Vadhan
    • 1
  1. 1.School of Engineering and Applied Sciences & Center for Research on Computation and SocietyHarvard UniversityCambridgeUSA

Personalised recommendations