Unconditional and Composable Security Using a Single Stateful Tamper-Proof Hardware Token

  • Nico Döttling
  • Daniel Kraschewski
  • Jörn Müller-Quade
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6597)

Abstract

Cryptographic assumptions regarding tamper proof hardware tokens have gained increasing attention. Even if the tamper-proof hardware is issued by one of the parties, and hence not necessarily trusted by the other, many tasks become possible: Tamper proof hardware is sufficient for universally composable protocols, for information-theoretically secure protocols, and even allow to create software which can only be used once (One-Time-Programs). However, all known protocols employing tamper-proof hardware are either indirect, i.e., additional computational assumptions must be used to obtain general two party computations or a large number of devices must be used. In this work we present the first protocol realizing universally composable two-party computations (and even trusted One-Time-Programs) with information-theoretic security using only one single tamper-proof device issued by one of the mutually distrusting parties.

Keywords

Secure Two-Party Computation Universal Composability Tamper-Proof Hardware Information-Theoretical Security 

References

  1. 1.
    Beaver, D.: Correlated pseudorandomness and the complexity of private computations. In: STOC, pp. 479–488 (1996)Google Scholar
  2. 2.
    Ben-Or, M., Goldwasser, S., Kilian, J., Wigderson, A.: Multi-prover interactive proofs: How to remove intractability assumptions. In: STOC, pp. 113–131 (1988)Google Scholar
  3. 3.
    Brouchier, J., Kean, T., Marsh, C., Naccache, D.: Temperature attacks. IEEE Security & Privacy 7(2), 79–82 (2009)CrossRefGoogle Scholar
  4. 4.
    Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: FOCS, pp. 136–145 (2001)Google Scholar
  5. 5.
    Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–85. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Canetti, R., Fischlin, M.: Universally Composable Commitments. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Damgård, I., Nielsen, J.B., Wichs, D.: Isolated proofs of knowledge and isolated zero knowledge. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 509–526. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Damgård, I., Nielsen, J.B., Wichs, D.: Universally composable multiparty computation with partially isolated parties (2007)Google Scholar
  9. 9.
    Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts. Commun. ACM 28(6), 637–647 (1985)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Fischlin, M., Pinkas, B., Sadeghi, A.-R., Schneider, T., Visconti, I.: Secure set intersection with untrusted hardware tokens. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 1–16. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM 33(4), 792–807 (1986)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious rams. J. ACM 43(3), 431–473 (1996)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-time programs. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 39–56. Springer, Heidelberg (2008)Google Scholar
  14. 14.
    Goyal, V., Ishai, Y., Mahmoody, M., Sahai, A.: Interactive locking, zero-knowledge PCPs, and unconditional cryptography. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 173–190. Springer, Heidelberg (2010)Google Scholar
  15. 15.
    Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding cryptography on tamper-proof hardware tokens. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 308–326. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Hofheinz, D., Müller-Quade, J., Unruh, D.: Universally composable zero-knowledge arguments and commitments from signature cards. In: In Proc. of the 5th Central European Conference on Cryptology MoraviaCrypt 2005 (2005)Google Scholar
  18. 18.
    Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008)Google Scholar
  19. 19.
    Katz, J.: Universally composable multi-party computation using tamper-proof hardware. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 115–128. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Kilian, J.: Founding cryptography on oblivious transfer. In: STOC, pp. 20–31 (1988)Google Scholar
  21. 21.
    Kolesnikov, V.: Truly efficient string oblivious transfer using resettable tamper-proof tokens. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 327–342. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  22. 22.
    Moran, T., Segev, G.: David and goliath commitments: UC computation for asymmetric parties using tamper-proof hardware. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 527–544. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  23. 23.
    Rabin, M.O.: How to exchange secrets by oblivious transfer. technical report tr-81. Technical report, Aiken Computation Laboratory, Harvard University (1981)Google Scholar
  24. 24.
    Wolf, S., Wullschleger, J.: Oblivious transfer is symmetric. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 222–232. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. 25.
    Wullschleger, J.: Oblivious-transfer amplification. CoRR, abs/cs/0608076 (2006)Google Scholar

Copyright information

© International Association for Cryptologic Research 2011

Authors and Affiliations

  • Nico Döttling
    • 1
  • Daniel Kraschewski
    • 1
  • Jörn Müller-Quade
    • 1
  1. 1.Institute of Cryptography and Security, Faculty of InformaticsKarlsruhe Institute of TechnologyGermany

Personalised recommendations