Advertisement

Blind Measurement of Image Blur for Vision-Based Applications

  • Shiqian Wu
  • Shoulie Xie
  • Weisi Lin
Part of the Studies in Computational Intelligence book series (SCI, volume 346)

Abstract

This chapter presents a novel metric for image quality assessment from a single image. The key idea is to estimate the point spread function (PSF) from the line spread function (LSF), whereas the LSF is constructed from edge information. It is proven that an edge point corresponds to the local maximal gradient in a blurred image, and therefore edges can be extracted from blurred images by conventional edge detectors. To achieve high accuracy, local Radon transform is implemented and a number of LSFs are extracted from each edge. The experimental results on a variety of synthetic and real blurred images validate the proposed method. To improve the system efficiency, a criterion for edge sharpness is further proposed and only the edge points from sharp edges are selected for extracting the LSF without using all edge information. The effects of nearby edges on the selected edge feature and the resultant LSF are analyzed, and two constrains are proposed to determine appropriate LSFs. The experimental results demonstrate the accuracy and efficiency of the proposed paradigm. This scheme has fast speed and can be served in blind image quality evaluation for real-time automatic machine-vision-based applications.

Keywords

Point Spread Function Edge Point Step Edge Image Quality Assessment Radon Transform 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, H.C., Hunt, B.R.: Digital Image Restoration. Prentice Hall, Englewood Cliffs (1977)Google Scholar
  2. Beck, P.V.: Edge-based Image Representation and Coding. Ph.D. dissertation, Delft University of Technology, The Netherlands (1995)Google Scholar
  3. Bones, P.J., Bretschneider, T., Forne, C.J., Millane, R.P., McNeill, S.J.: Tomographic blur identification using image edges. In: Proc. SPIE, vol. 4123, pp. 133–141 (2000)Google Scholar
  4. Cannon, G.O.M.: Blind deconvolution of spatially invariant image blurs with phase. IEEE Trans. Acoustics, Speech and Signal Processing 24, 58–63 (1976)CrossRefGoogle Scholar
  5. Chang, M.M., Tekalp, A.M., Erdem, A.T.: Blur identification using bispectrum. IEEE Trans. Signal Processing 39, 2323–2325 (1991)CrossRefGoogle Scholar
  6. Chen, L., Yap, K.-H.: Efficient discrete spatial techniques for blur support identification in blind image deconvolution. IEEE Trans. Signal Processing 54, 1557–1562 (2006)CrossRefGoogle Scholar
  7. Fabian, R., Malah, D.: Robust identification of motion and out-of focus blur parameters from blur and noisy images. CVGIP: Graphical Models and Image Processing 53, 403–412 (1991)CrossRefGoogle Scholar
  8. Fortier, N., Demoment, G., Goussard, Y.: GCV and ML methods of determining parameters in image restoration by regularization: fast computation in the spatial domain and experimental comparison. J. Visual Commun. Imag. Rep. 4, 157–170 (1993)CrossRefGoogle Scholar
  9. Jain, A.K.: Fundamentals of Digital Image Processing. Prentice Hall, Englewood Cliffs (1989)MATHGoogle Scholar
  10. Kayargadde, V., Martens, J.-B.: Estimation of perceived image blur using edge features. International Journal of Imaging Systems and Technology 7, 102–109 (1996)CrossRefGoogle Scholar
  11. Keelan, B.W.: Handbook of Image Quality. Marcel Dekker, New York (2002)CrossRefGoogle Scholar
  12. Kim, S.K., Park, S.R., Paik, J.K.: Simultaneous out-of-focus blur estimation and restoration for digital auto-focusing system. IEEE Trans. Consumer Electronics 44, 1071–1075 (1998)CrossRefGoogle Scholar
  13. Kundur, D., Hatzinakos, D.: Blind image deconvolutions. IEEE Signal Processing Magazine 13, 43–63 (1996)CrossRefGoogle Scholar
  14. Lagendijk, R.D.L., Takalp, A.M., Biemond, J.: Maximum likelihood image and blur identification: a unifying approach. Optical Engineering 29, 422–435 (1990a)CrossRefGoogle Scholar
  15. Lagendijk, R.D.L., Biemond, J., Boekee, D.E.: Identification and restoration of noisy blurred image using the expectation-maximization algorithm. IEEE Trans. Acoust, Speech, Signal Processing 38, 1180–1191 (1990b)CrossRefMATHGoogle Scholar
  16. Lehr, J., Sibarita, J.-B., Chassery, J.-M.: Image restoration in X-Ray microscopy: PSF determination and biological applications. IEEE Trans. Image Processing 7, 258–263 (1998)CrossRefGoogle Scholar
  17. Li, X.: Blind image quality assessment. In: Proc. IEEE Int. Conf. Image Processing, NY, pp. I-449–452 (2002)Google Scholar
  18. Luxen, M., Forstner, W.: Characterizing image quality: blind estimation of the point spread function from a single image. In: Proc. Photogrammetric Computer Vision, Austria, pp. A205–A210 (2002)Google Scholar
  19. Marziliano, P., Winkler, S., Dufaux, F., Ebrahimi, T.: Perceptual blur and ringing metrics: application to JPEG2000. Signal Processing: Image Commun. 19, 163–172 (2004)CrossRefGoogle Scholar
  20. Reeves, S.J., Mersereau, R.M.: Blur identification by the method of generalized crossvalidation. IEEE Trans. Image Processing 1, 301–311 (1992)CrossRefGoogle Scholar
  21. Rom, R.: On the cepstrum of two-dimensional functions. IEEE Trans. Inform. Theory IT 21, 214–217 (1975)CrossRefMathSciNetGoogle Scholar
  22. Savakis, E., Trussell, H.J.: On the accuracy of PSF representation in image restoration. IEEE Trans. Image Processing 2, 252–259 (1993)CrossRefGoogle Scholar
  23. Sezan, M.I., Pavlovic, G., Tekalp, A.M., Erdem, A.T.: On modeling the focus blur in image restoration. In: Proc. IEEE Int. Conf Acoust., Speech, and Signal Proc., Toronto, pp. 2485–2488 (1991)Google Scholar
  24. Subbarao, M., Tyan, J.-K.: The optimal focus measure for passive autofocusing and depth-from-focus. In: Proc. SPIE Int. Symp., Videometrics V, vol. 2598, pp. 89–99 (1995)Google Scholar
  25. Wolin, D., Johnson, K., Kipman, Y.: The importance of objective analysis in image quality evaluation. In: Proc. Int. Conf. Digital Printing Technologies, pp. 603–606 (1998)Google Scholar
  26. Wu, S., Chen, L., Lin, W., Jiang, L., Xiong, W., Ong, S.H.: An objective out-of-focus blur measurement. In: Proc. 5th Int. Conf. Inform., Commun. & Signal Processing, Thailand, pp. 334–338 (2005)Google Scholar
  27. Wu, S., Lin, W., Xie, S., Lu, Z., Ong, E., Yao, S.: Blind blur assessment for vision-based applications. J. Visual Commun. Imag. Rep. 20, 231–241 (2009)CrossRefGoogle Scholar
  28. Ziou, D.: The influence of edge direction on the estimation of edge contrast and orientation. Patt. Recog. 34, 855–863 (2001)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Shiqian Wu
    • 1
  • Shoulie Xie
    • 1
  • Weisi Lin
    • 2
  1. 1.Institute for Infocomm Research (A*STAR) Agency for Science, Technology and ResearchSingapore
  2. 2.School of Computer EngineeringNanyang Technological UniversitySingapore

Personalised recommendations