Including Environmental Performance Indicators into Kernel based Search Space Representations

Chapter

Abstract

Virtual power plants are considered a promising concept for the integration of decentralized energy resources into the future electricity grid. But such a plant must not only optimize load schedules merely according to given economic objectives and technical constraints, if it is to be considered as a green technology. Hence, environmental issues have to be incorporated into optimization objectives, too. Here, we show the possibility of integrating respective performance indicators into search space descriptions in a way that enables direct incorporation into optimization. A meta-model for constrained search spaces based on one-class support vector machines is enriched with information on individual environmental impacts.

Keywords

Environmental Performance Indicator Support Vector Methods Virtual Power Plants Power Generation Planning Smart Grids 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ben-Hur, A., Siegelmann, H.T., Horn, D., Vapnik, V.: Support vector clustering. Journal of Machine Learning Research 2, 125–137 (2001)CrossRefGoogle Scholar
  2. 2.
    Bremer, J., Rapp, B., Sonnenschein, M.: Support vector based encoding of distributed energy resources feasible load spaces. In: IEEE PES Conference on Innovative Smart Grid Technologies Europe. Chalmers Lindholmen, Gothenburg, Sweden (2010)Google Scholar
  3. 3.
    Caldon, R., Patria, A., Turri, R.: Optimal control of a distribution system with a virtual power plant. Bulk Power System Dynamics and Control, Cortina. d’Ampezzo, Italy (2004)Google Scholar
  4. 4.
    Dada, A., Staake, T., Fleisch, E.: Reducing environmental impact in procurement by integrating material parameters in information systems: The example of apple sourcing. AMCIS 2010 Proceedings (2010)Google Scholar
  5. 5.
    Hrebíček, J., Misarová, P., Hyršlová, J.: Environmental Key Performance Indicators and Cor- porate Reporting. In: Environmental Accounting and Sustainable Development Indicators (EA-SDI 2007), pp. 978–980. Universita Jana Evangelisty Purkyně (2007)Google Scholar
  6. 6.
    Lukovic, S., Kaitovic, I., Mura, M., Bondi, U.: Virtual power plant as a bridge between distributed energy resources and smart grid. Hawaii International Conference on System Sciences 0, 1–8 (2010). DOI. http://doi.ieeecomputersociety.org/10.1109/HICSS.2010.437
  7. 7.
    Schölkopf, B., Mika, S., Burges, C., Knirsch, P., Müller, K.R., Rätsch, G., Smola, A.: Input space vs. feature space in kernel-based methods. IEEE Transactions on Neural Networks 10(5), 1000–1017 (1999)Google Scholar
  8. 8.
    Stadler, M., Krause, W., Sonnenschein, M., Vogel, U.: Modelling and evaluation of control schemes for enhancing load shift of electricity demand for cooling devices. Environmental Modelling & Software 24(2), 285–295 (2009)CrossRefGoogle Scholar
  9. 9.
    Teuteberg, F., Gómez, J.M.: Green computing & sustainability - Status Quo und Herausforderungen für BUIS dernächsten Generation. Praxis der Wirtschaftsinformatik 47(274), 6–17 (2010)Google Scholar
  10. 10.
    Thomas, B.: Mini-Blockheizkraftwerke: Grundlagen, Gera¨tetechnik, Betriebsdaten. Vogel Buchverlag (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Joerg Bremer
    • 1
  • Barbara Rapp
    • 1
  • Michael Sonnenschein
    • 1
  1. 1.University of OldenburgOldenburgGermany

Personalised recommendations