How to Solve a Diophantine Equation

Abstract

We introduce Diophantine equations and show evidence that it can be hard to solve them. Then we demonstrate how one can solve a specific equation related to numbers occurring several times in Pascal’s Triangle with state-of-the-art methods.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Michael Beck, Eric Pine, Wayne Tarrant, and Kim Yarbrough Jensen, New integer representations as the sum of three cubes. Mathematics of Computation 76(259), 1683–1690 (2007) MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    Yann Bugeaud, Maurice Mignotte, Samir Siksek, Michael Stoll, and Szabolcs Tengely, Integral points on hyperelliptic curves. Algebra & Number Theory 2(8), 859–885 (2008) MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    David Hilbert, Mathematische Probleme. Vortrag, gehalten auf dem internationalen Mathematiker-Congress zu Paris 1900 (German). Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen 1900, 253–297 (1900) Google Scholar
  4. [4]
    David Hilbert, Mathematical problems. Bulletin of the American Mathematical Society 8, 437–479 (1902); reprinted: Bulletin of the American Mathematical Society (New Series) 37, 407–436 (2000) MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    Marc Hindry and Joseph H. Silverman, Diophantine Geometry. An Introduction. Graduate Texts in Mathematics, volume 201, Springer, New York (2000) MATHGoogle Scholar
  6. [6]
    Yuri V. Matiyasevich, Hilbert’s Tenth Problem. MIT Press, Cambridge (1993) Google Scholar
  7. [7]
    Roel J. Stroeker and Benjamin M.M. de Weger, Elliptic binomial Diophantine equations. Mathematics of Computation 68, 1257–1281 (1999) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Mathematisches InstitutUniversität BayreuthBayreuthGermany

Personalised recommendations