Structure and Randomness in the Prime Numbers

  • Terence Tao


We give a quick tour through some topics in analytic prime number theory, focusing in particular on the strange mixture of order and chaos in the primes. For instance, while primes do obey some obvious patterns (e.g. they are almost all odd), and have a very regular asymptotic distribution (the prime number theorem), we still do not know a deterministic formula to quickly generate large numbers guaranteed to be prime, or to count even very simple patterns in the primes, such as twin primes p,p+2. Nevertheless, it is still possible in some cases to understand enough of the structure and randomness of the primes to obtain some quite nontrivial results.


Arithmetic Progression Random Model Riemann Zeta Function Simple Pattern Riemann Hypothesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Manindra Agrawal, Neeraj Kayal, and Nitin Saxena, PRIMES is in P. Annals of Mathematics (2) 160, 781–793 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    Euclid, The Elements, circa 300 BCE Google Scholar
  3. [3]
    Great Internet Mersenne Prime Search. (2008)
  4. [4]
    Ben Green and Terence Tao, The primes contain arbitrarily long arithmetic progressions. Annals of Mathematics 167(2), 481–547 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    Ben Green and Terence Tao, Linear equations in primes. Preprint., 84 pages (April 22, 2008)
  6. [6]
    Ben Green and Terence Tao, The Möbius function is asymptotically orthogonal to nilsequences. Preprint., 22 pages (April 26, 2010)
  7. [7]
    Ben Green, Terence Tao and Tamar Ziegler, The inverse conjecture for the Gowers norm. Preprint Google Scholar
  8. [8]
    Jacques Hadamard, Sur la distribution des zéros de la fonction ζ(s) et ses conséquences arithmétiques. Bulletin de la Société Mathématique de France 24, 199–220 (1896) MathSciNetzbMATHGoogle Scholar
  9. [9]
    Godfrey H. Hardy and John E. Littlewood, Some problems of ‘partitio numerorum’. III. On the expression of a number as a sum of primes. Acta Mathematica 44, 1–70 (1923) MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    Gary L. Miller, Riemann’s hypothesis and tests for primality. Journal of Computer and System Sciences 13(3), 300–317 (1976) MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    Polymath4 project: Deterministic way to find primes.
  12. [12]
    Michael O. Rabin, Probabilistic algorithm for testing primality. Journal of Number Theory 12, 128–138 (1980) MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    Lowell Schoenfeld, Sharper bounds for the Chebyshev functions θ(x) and ψ(x). II. Mathematics of Computation 30, 337–360 (1976) MathSciNetzbMATHGoogle Scholar
  14. [14]
    Charles-Jean de la Vallée Poussin, Recherches analytiques de la théorie des nombres premiers. Annales de la Société scientifique de Bruxelles 20, 183–256 (1896) Google Scholar
  15. [15]
    Ivan M. Vinogradov, The method of trigonometrical sums in the theory of numbers (Russian). Travaux de l’Institut Mathématique Stekloff 10 (1937) Google Scholar
  16. [16]
    Don Zagier, Newman’s short proof of the prime number theorem. American Mathematical Monthly 104(8), 705–708 (1997) MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of MathematicsUCLALos AngelesUSA

Personalised recommendations