On Combining Selective Best Bits of Iris-Codes

  • Christian Rathgeb
  • Andreas Uhl
  • Peter Wild
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6583)

Abstract

This paper describes a generic fusion technique for iris recognition at bit-level we refer to as Selective Bits Fusion. Instead of storing multiple biometric templates for each algorithm, the proposed approach extracts most discriminative bits from multiple algorithms into a new template being even smaller than templates for individual algorithms. Experiments for three individual iris recognition algorithms on the open CASIA-V3-Interval iris database illustrate the ability of this technique to improve accuracy and processing time simultaneously. In all tested configurations Selective Bits Fusion turned out to be more accurate than fusion using the Sum Rule while being about twice as fast. The design of the new template allows explicit control of processing time requirements and introduces a tradeoff between time and accuracy of biometric fusion, which is highlighted in this work.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bowyer, K., Hollingsworth, K., Flynn, P.: Image understanding for iris biometrics: A survey. Comp. Vision and Image Understanding 110(2), 281–307 (2008)CrossRefGoogle Scholar
  2. 2.
    Daugman, J.: How iris recognition works. IEEE Trans. on Circuits and Systems for Video Technology 14(1), 21–30 (2004)CrossRefGoogle Scholar
  3. 3.
    Daugman, J.: Probing the uniqueness and randomness of iriscodes: Results from 200 billion iris pair comparisons. Proc. of the IEEE 94(11), 1927–1935 (2006)CrossRefGoogle Scholar
  4. 4.
    Gentile, J.E., Ratha, N., Connell, J.: SLIC: Short Length Iris Code. In: Proc. of the 3rd IEEE Int’l Conf. on Biometrics: Theory, Applications and Systems (BTAS 2009), Piscataway, NJ, USA, 2009, pp. 171–175. IEEE Press, Los Alamitos (2009)Google Scholar
  5. 5.
    Hollingsworth, K.P., Bowyer, K.W., Flynn, P.J.: The best bits in an iris code. IEEE Trans. on Pattern Analysis and Machine Intelligence 31(6), 964–973 (2009)CrossRefGoogle Scholar
  6. 6.
    Hunny Mehrotra, A.R., Gupta, P.: Fusion of iris and fingerprint biometric for recognition. In: Proc. of the Int’l Conf. on Signal and Image Processing (ICSIP), pp. 1–6 (2006)Google Scholar
  7. 7.
    Kittler, J., Hatef, M., Duin, R., Matas, J.: On combining classifiers. IEEE Trans. on Pattern Analysis and Machine Intelligence 20(3), 226–239 (1998)CrossRefGoogle Scholar
  8. 8.
    Ko, J.-G., Gil, Y.-H., Yoo, J.-H., Chung, K.-I.: A novel and efficient feature extraction method for iris recognition. ETRI Journal 29(3), 399–401 (2007)CrossRefGoogle Scholar
  9. 9.
    Konrad, M., Stögner, H., Uhl, A., Wild, P.: Computationally efficient serial combination of rotation-invariant and rotation compensating iris recognition algorithms. In: Proc. of the 5th Int’l Conf. on Computer Vision Theory and Applications, VISAPP 2010, vol. 1, pp. 85–90 (2010)Google Scholar
  10. 10.
    Ma, L., Tan, T., Wang, Y., Zhang, D.: Efficient iris recognition by characterizing key local variations. IEEE Trans. on Image Processing 13(6), 739–750 (2004)CrossRefGoogle Scholar
  11. 11.
    Park, C.-H., Lee, J.-J.: Extracting and combining multimodal directional iris features. In: Zhang, D., Jain, A.K. (eds.) ICB 2005. LNCS, vol. 3832, pp. 389–396. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Rathgeb, C., Uhl, A., Wild, P.: Incremental iris recognition: A single-algorithm serial fusion strategy to optimize time complexity. In: Proc. of the 4th IEEE Int’l Conf. on Biometrics: Theory, Applications and Systems (BTAS 2010), pp. 1–6. IEEE Press, Los Alamitos (2010)Google Scholar
  13. 13.
    Ross, A., Nandakumar, K., Jain, A.: Handbook of Multibiometrics. Springer, Heidelberg (2006)Google Scholar
  14. 14.
    Sun, Z., Wang, Y., Tan, T., Cui, J.: Improving iris recognition accuracy via cascaded classifiers. IEEE Trans. on Systems, Man and Cybernetics 35(3), 435–441 (2005)CrossRefGoogle Scholar
  15. 15.
    Vatsa, M., Singh, R., Noore, A.: Reducing the false rejection rate of iris recognition using textural and topological features. Int. Journal of Signal Processing 2(2), 66–72 (2005)Google Scholar
  16. 16.
    Wang, Y., Tan, T., Jain, A.K.: Combining face and iris biometrics for identity verification. In: Kittler, J., Nixon, M. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 805–813. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Zhang, P.-F., Li, D.-S., Wang, Q.: A novel iris recognition method based on feature fusion. In: Proc. of the Int’l Conf. on Machine Learning and Cybernetics, pp. 3661–3665 (2004)Google Scholar
  18. 18.
    Zhang, Z., Wang, R., Pan, K., Li, S., Zhang, P.: Fusion of near infrared face and iris biometrics. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 172–180. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Christian Rathgeb
    • 1
  • Andreas Uhl
    • 1
  • Peter Wild
    • 1
  1. 1.Department of Computer SciencesUniversity of SalzburgSalzburgAustria

Personalised recommendations