Principal Directions of Synthetic Exact Filters for Robust Real-Time Eye Localization

  • Vitomir Štruc
  • Jerneja Žganec Gros
  • Nikola Pavešić
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6583)

Abstract

The alignment of the facial region with a predefined canonical form is one of the most crucial steps in a face recognition system. Most of the existing alignment techniques rely on the position of the eyes and, hence, require an efficient and reliable eye localization procedure. In this paper we propose a novel technique for this purpose, which exploits a new class of correlation filters called Prinicpal directions of Synthetic Exact Filters (PSEFs). The proposed filters represent a generalization of the recently proposed Average of Synthetic Exact Filters (ASEFs) and exhibit desirable properties, such as relatively short training times, computational simplicity, high localization rates and real time capabilities. We present the theory of PSEF filter construction, elaborate on their characteristics and finally develop an efficient procedure for eye localization using several PSEF filters. We demonstrate the effectiveness of the proposed class of correlation filters for the task of eye localization on facial images from the FERET database and show that for the tested task they outperform the established Haar cascade object detector as well as the ASEF correlation filters.

Keywords

Biometrics eye localization advanced correlation filters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bolme, D.S., Draper, B.A., Beveridge, J.R.: Average of synthetic exact filters. In: Proc. of CVPR 2009, pp. 2105–2112 (2009)Google Scholar
  2. 2.
    Bolme, D.S., Liu, Y.M., Draper, B.A., Beveridge, J.R.: Simple real-time human detection using a single correlation filter. In: Proc. of the 12th Workshop on Performance Evaluation of Tracking and Surveillance, pp. 1–8 (2009)Google Scholar
  3. 3.
    Bradski, G., Kaehler, A.: Learning OpenCV: computer vision with the OpenCV library. O’Reilly Media, Sebastopol (2008)Google Scholar
  4. 4.
    Hester, C.F., Casasent, D.: Mulitvariant technique for multiclass pattern recognition. Applied Optics 19(11), 1758–1761 (1980)CrossRefGoogle Scholar
  5. 5.
    Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled Faces in the Wild: a database for studying face recognition in unconstrained environments. University of Massachusetts, Amherst, Technical Report 07-49 (October 2007)Google Scholar
  6. 6.
    Jesorsky, O., Kirchberg, K.J., Frischholz, R.W.: Robust face detection using the hausdorff distance. In: Bigun, J., Smeraldi, F. (eds.) AVBPA 2001. LNCS, vol. 2091, pp. 90–95. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Kerekes, R.A., Kumar, B.V.K.V.: Correlation filters with controlled scale response. IEEE Transactions on Image Processing 15(7), 1794–1802 (2006)CrossRefGoogle Scholar
  8. 8.
    Kumar, B.V.K.V., Mahalanobis, A., Takessian, A.: Optimal tradeoff circular harmonic function correlation filter methods providing controlled in-plane rotation response. IEEE Transactions on Image Processing 9(6), 1025–1034 (2000)CrossRefGoogle Scholar
  9. 9.
    Mahalanobis, A., Kumar, B.V.K.V., Casasent, D.: Minimum average correlation energy filters. Applied Optics 26(17), 3633–3640 (1987)CrossRefGoogle Scholar
  10. 10.
    Mahalanobis, A., Kumar, B.V.K.V., Sims, S.R.F.: Distance-classifier correlation filters for multiclass target recognition. Applied Optics 35(17), 3127–3133 (1996)CrossRefGoogle Scholar
  11. 11.
    Mahalanobis, A., Kumar, B.V.K.V., Song, S., Sims, S.R.F., Epperson, J.: Unconstrained correlation filters. Applied Optics 33(17), 3751–3759 (1994)CrossRefGoogle Scholar
  12. 12.
    Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J.: The FERET evaluation methodology for face-recognition algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(10), 1090–1104 (2000)CrossRefGoogle Scholar
  13. 13.
    Refregier, P.: Optimal trade-off filters for noise robustness, sharpness of the correlation peak, and Horner efficiency. Optics Letters 16(11), 829–831 (1991)CrossRefGoogle Scholar
  14. 14.
    Savvides, M., Kumar, B.V.K.V.: Efficient design of advanced correlation filters for robust distortion-tolerant face recognition. In: Proc. of the IEEE Conference on Advanced Video and Signal Based Surveillance, pp. 45–52 (2003)Google Scholar
  15. 15.
    Štruc, V., Gajšek, R., Pavešić, N.: Principal Gabor filters for face recognition. In: Proc. of BTAS 2009, pp. 1–6 (2009)Google Scholar
  16. 16.
    Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neurosicence 3(1), 71–86 (1991)CrossRefGoogle Scholar
  17. 17.
    Viola, P., Jones, M.J.: Robust real-time face detection. International Journal of Computer Vision 57, 137–154 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Vitomir Štruc
    • 1
    • 2
  • Jerneja Žganec Gros
    • 1
  • Nikola Pavešić
    • 2
  1. 1.Alpineon LtdLjubljanaSlovenia
  2. 2.Faculty of Electrical EngineeringUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations