Increasing Predictability and Sharing Tacit Knowledge in Electronic Design

  • Vadim Ermolayev
  • Frank Dengler
  • Carolina Fortuna
  • Tadej Štajner
  • Tom Bösser
  • Elke-Maria Melchior


The chapter reports on the use of knowledge process learning, articulation and sharing technologies developed in the ACTIVE project for increasing the performance and decreasing the ramp-up efforts of knowledge workers in engineering design projects. Attention is paid to the specific characteristics of knowledge processes in microelectronic engineering design, of which one of the most important is the absence of predefined workflows. Instead of following rigid working patterns, the knowledge workers exploit their tacit knowledge and experience for finding the most productive way through the “terrain” of the possible process continuations. The knowledge workers in this domain are design project managers, designers, and design support engineers. Process knowledge is mined from distributed heterogeneous datasets, fused, and used for visualizing the design project plan and execution information. The visualization suggests optimized performance, points to the bottlenecks in executions, and fosters collaboration in development teams. A project navigation paradigm is developed that helps knowledge workers more easily accomplish their work. We describe the software prototype architecture and implementation. Validation results are presented which indicate that the solution is helpful in providing expert assistance to design project managers performing their typical tasks of project planning and execution control.


Tacit Knowledge Design Project Typical Task Knowledge Worker Informal Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The research leading to these results has been funded in part by the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement IST-2007-215040.


  1. Andersson B, Bergholtz M, Edirisuriya A, Ilayperuma T, Johannesson P, Gordijn J, Grégoire B, Schmitt M, Dubois E, Abels S, Hahn A, Wangler B, Weigand H (2006) Towards a reference ontology for business models. In: ER’06: Proceedings of the 25th international conference on conceptual modeling, Springer-Verlag, Berlin, HeidelbergGoogle Scholar
  2. Bock C, Grüninger M (2005) PSL: a semantic domain for flow models. Softw Syst Model 4(2):209–231CrossRefGoogle Scholar
  3. Crapo A W, Waisel L B, Wallace W A, Willemain T R (2000) Visualization and the process of modeling: a cognitive-theoretic view. In: KDD’00: Proc. 6th ACM SIGKDD international conference on knowledge discovery and data mining, ACM, New YorkGoogle Scholar
  4. Dello K, Nixon L, Tolksdorf R (2008) Extending the Makna Semantic Wiki to support workflows. In: Lange C, Schaffert S, Skaf-Molli H, Völkel M (eds) Proc. 3rd Semantic Wiki Workshop,, ISSN 1613–0073, pp. 119–123, onlineGoogle Scholar
  5. Dengler F, Lamparter S, Hefke M, Abecker A (2009) Collaborative process development using Semantic MediaWiki. In: Proceedings of the 5th conference of professional knowledge management, Solothurn, SwitzerlandGoogle Scholar
  6. Dietz JLG (2006) Enterprise ontology: Theory and methodology. Springer Verlag, BerlinCrossRefGoogle Scholar
  7. Dorn C, Burkhart T, Werth D, Dustdar S (2010) Self-adjusting recommendations for people-driven ad-hoc processes. In: Hull R, Mendling J, Tai S (eds) Business process management, Lecture Notes in Computer Science. Springer-Verlag, Berlin, HeidelbergGoogle Scholar
  8. Drucker PF (1969) The age of discontinuity: guidelines to our changing society. Heinemann, LondonGoogle Scholar
  9. Ermolayev V, Keberle N, Matzke W-E (2008) An upper level ontological model for engineering design performance domain. In: ER'08: Proceedings of the 27th international conference on conceptual modeling, Springer-Verlag, Berlin, HeidelbergGoogle Scholar
  10. Ermolayev V, Ruiz C, Tilly M, Jentzsch E, Gomez-Perez JM (2010b) A context model for knowledge workers. In: Proceedings of the 2nd international workshop on context, information and ontologies (CIAO 2010),,ISSN1613-0073
  11. Ghidini C, Kump B, Lindstaedt S, Mahbub N, Pammer V, Rospocher M, Serafini L (2009) Moki: the enterprise modelling wiki. In: The semantic web: research and applications, Lecture Notes in Computer Science. Springer, Berlin, HeidelbergGoogle Scholar
  12. Grebner O, Ong E, Riss U, Brunzel M, Bernardi A, Roth-Berghofer T (2006) Task management model. NEPOMUK project, deliverable D3.1,, Accessed date 5 Aug 2011
  13. Grobelnik M, Mladenić D, Ferlež J (2009) Probabilistic temporal process model for knowledge processes: handling a stream of linked text. Conference on data mining and data warehouses (SiKDD 2009), Ljubljana, SloveniaGoogle Scholar
  14. Gronau N, Müller C, Korf R (2005) KMDL – capturing, analysing and improving knowledge-intensive business processes. J Univ Comput Sci 11(1):452–472. doi: 10.3217/jucs-011-04-0452 Google Scholar
  15. Grüninger M, Atefy K, Fox MS (2000) Ontologies to support process integration in enterprise engineering. Comp Math Org Theor 6(4):381–394. doi: 10.1023/A:1009610430261 CrossRefGoogle Scholar
  16. Hepp M, Roman D (2007) An ontology framework for semantic business process management. In: Oberweis A, Weinhardt C, Gimpel H, Koschmider A, Pankratius V, Schmizler B (eds): eOrganisation: Service-, Prozess, Market-Engineering, 1, Universitaetsverlag KarlsruheGoogle Scholar
  17. Hingston P (2002) Using finite state automata for sequence mining. Aust Comput Sci Commun 24(1):105–110. doi: 10.1145/563857.563814 Google Scholar
  18. Jacquemont S, Jacquenet F, Sebban M (2009) Mining probabilistic automata: a statistical view of sequential pattern mining. Mach Learn 75(1):91–127. doi: 10.1007/s10994-008-5098-y CrossRefGoogle Scholar
  19. Krötzsch M, Vrandecic D, Völkel M, Haller H, Studer R (2007) Semantic wikipedia. J Web Semantics 5(4):251–261. doi: 10.1016/j.websem.2007.09.001 CrossRefGoogle Scholar
  20. Leuf B, Cunningham W (2001) The wiki way: collaboration and sharing on the internet. Addison-Wesley, Upper Saddle River, NJGoogle Scholar
  21. Mayer R, Menzel C, Painter M, Witte PD, Blinn T, Perakath B (1995) Information integration for concurrent engineering (IICE) IDEF3 process description capture method report, Knowledge Based Systems Inc., College Station, TexasGoogle Scholar
  22. Nonaka I, Takeuchi H (1995) The knowledge-creating company. Oxford University Press, New YorkGoogle Scholar
  23. Rabiner LR (1990) A tutorial on hidden Markov models and selected applications in speech recognition. In: Readings in speech recognition. Morgan Kaufmann Publishers Inc., San FranciscoGoogle Scholar
  24. Ryu K, Yücesan E (2007) CPM: a collaborative process modeling for cooperative manufacturers. Adv Eng Inf 21(2):231–239. doi: 10.1016/j.aei.2006.05.003 CrossRefGoogle Scholar
  25. Scheer A-W, Jost W (2002) ARIS in der Praxis. Springer Verlag, BerlinCrossRefGoogle Scholar
  26. Schreiber G, Akkermans H, Anjewierden A, de Hoog R, Shadbolt N, van de Velde W, Wielinga B (1999) Knowledge engineering and management: the CommonKADS methodology. MIT Press, Cambridge, MAGoogle Scholar
  27. Štajner T, Mladenić D (2010) Modeling knowledge worker activity. In: Proceedings of the workshop on applications of pattern analysis, Cumberland LodgeGoogle Scholar
  28. Štajner T, Mladenić D, Grobelnik M (2010) Exploring contexts and actions in knowledge processes. In: Proceedings of the 2nd international workshop on context, information and ontologies (CIAO 2010),,ISSN1613-0073
  29. Tilly M (2010) Dynamic models for knowledge processes. Final models. ACTIVE project deliverable D1.2.2,, Accessed date 5 Aug 2011
  30. Uschold M, King M, Moralee S, Zorgios Y (1998) The enterprise ontology. Knowl Eng Rev 13(1):31–89. doi: 10.1017/S0269888998001088 CrossRefGoogle Scholar
  31. van der Aalst WMP, Song M (2004) Mining social networks: uncovering interaction patterns in business processes. In: Proceedings of the international conference on business process management (BPM 2004), Lecture notes in computer science. Springer-Verlag, BerlinGoogle Scholar
  32. van Dongen BF, de Medeiros AKA, Verbeek HMW, Weijters A, van der Aalst WMP (2005) The ProM framework: a new era in process mining tool support. In: Application and theory of Petri nets. Springer, Berlin, HeidelbergGoogle Scholar
  33. Warren P, Kings N, Thurlow I, Davies J, Bürger T, Simperl E, Ruiz Moreno C, Gòmez-Pèrez JM, Ermolayev V, Ghani R, Tilly M, Bösser T, Imtiaz A (2009) Improving knowledge worker productivity – the ACTIVE integrated approach. BT Technol J 26(2):165–176Google Scholar
  34. Woitsch R, Karagiannis D (2005) Process oriented knowledge management: a service based approach. J Univ Comput Sci 11(4):565–588. doi: 10.3217/jucs-011-04-0565 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Vadim Ermolayev
    • 1
  • Frank Dengler
    • 2
  • Carolina Fortuna
    • 3
  • Tadej Štajner
    • 3
  • Tom Bösser
    • 4
  • Elke-Maria Melchior
    • 4
  1. 1.Zaporozhye National UniversityZaporozhyeUkraine
  2. 2.Karlsruhe Institute of TechnologyKarlsruheGermany
  3. 3.Jozef Stefan InstituteLjubljanaSlovenia
  4. 4.kea-pro, TalSpiringenSwitzerland

Personalised recommendations