Theory and Applications of Lattice Point Methods for Binomial Ideals

Part of the Abel Symposia book series (ABEL, volume 6)

Abstract

This survey of methods surrounding lattice point methods for binomial ideals begins with a leisurely treatment of the geometric combinatorics of binomial primary decomposition. It then proceeds to three independent applications whose motivations come from outside of commutative algebra: hypergeometric systems, combinatorial game theory, and chemical dynamics. The exposition is aimed at students and researchers in algebra; it includes many examples, open problems, and elementary introductions to the motivations and background from outside of algebra.

Keywords

binomial ideal primary decomposition polynomial ring affine semigroup commutative monoid lattice point convex polyhedron monomial ideal combinatorial game lattice game rational strategy misère quotient Horn hypergeometric system mass-action kinetics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AGHMR09]
    Leonard Adleman, Manoj Gopalkrishnan, Ming-Deh Huang, Pablo Moisset, and Dustin Reishus, On the mathematics of the law of mass action, SIAM Review, to appear, 2009. Google Scholar
  2. [And08]
    David F. Anderson, Global asymptotic stability for a class of nonlinear chemical equations, SIAM J. Appl. Math. 68, no. 5 (2008), 1464–1476. MathSciNetMATHCrossRefGoogle Scholar
  3. [AS09]
    David F. Anderson and Anne Shiu, The dynamics of weakly reversible population processes near facets, preprint. arXiv:math.DS/0903.0901
  4. [App1880]
    Paul Appell, Sur les séries hypergéometriques de deux variables et sur des équations différentielles linéaires aux dérivées partielles, Comptes Rendus 90 (1880), 296–298. Google Scholar
  5. [ANW07]
    Michael H. Albert, Richard J. Nowakowski, and David Wolfe, Lessons in play: An introduction to the combinatorial theory of games, A K Peters, Wellesley, 2007. MATHGoogle Scholar
  6. [AM69]
    M.F. Atiyah and I.G. Macdonald, Introduction to commutative algebra, Addison–Wesley, Reading, MA–London–Don Mills, ON, 1969. MATHGoogle Scholar
  7. [BW03]
    Alexander Barvinok and Kevin Woods, Short rational generating functions for lattice point problems, J. Amer. Math. Soc. 16, no. 4 (2003), 957–979. (electronic) MathSciNetMATHCrossRefGoogle Scholar
  8. [BCG82]
    Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy, Winning ways for your mathematical plays. Vol. 1: Games in general, Academic Press, Inc. (Harcourt Brace Jovanovich, Publishers), London–New York, 1982. MATHGoogle Scholar
  9. [Bou1902]
    Charles L. Bouton, Nim, a game with a complete mathematical theory, Ann. of Math. (2) 3, no. 1–4 (1901/02), 35–39. MathSciNetCrossRefGoogle Scholar
  10. [Cha03]
    Madalena Chavez, Observer design for a class of nonlinear systems, with applications to chemical and biological networks, Ph.D. Thesis, Rutgers University, New Brunswick, NJ, 2003. Google Scholar
  11. [Con01]
    John H. Conway, On numbers and games, Second edition, A K Peters, Ltd., Natick, MA, 2001. MATHGoogle Scholar
  12. [CDSS09]
    Gheorghe Craciun, Alicia Dickenstein, Anne Shiu, and Bernd Sturmfels, Toric dynamical systems, J. Symbolic Computation 44 (2009), 1551–1565. MathSciNetMATHCrossRefGoogle Scholar
  13. [Daw34]
    Thomas Dawson, Fairy Chess Supplement, The Problemist: British Chess Problem Society 2, no. 9 (1934), p. 94, Problem No. 1603. Google Scholar
  14. [DMM07]
    Alicia Dickenstein, Laura Felicia Matusevich, and Ezra Miller, Extended abstract: Binomial D-modules, Proceedings MEGA (Effective Methods in Algebraic Geometry), Strobl, Austria, 2007, 13 pages. http://www.ricam.oeaw.ac.at/mega2007/electronic/electronic.html
  15. [DMM10]
    Alicia Dickenstein, Laura Felicia Matusevich, and Ezra Miller, Combinatorics of binomial primary decomposition, Mathematische Zeitschrift 264, no. 4 (2010), 745–763. MathSciNetMATHCrossRefGoogle Scholar
  16. [DMM10′]
    Alicia Dickenstein, Laura Felicia Matusevich, and Ezra Miller, Binomial D-modules, Duke Mathematical Journal 151, no. 3 (2010), 385–429. MathSciNetMATHCrossRefGoogle Scholar
  17. [DM10]
    Alicia Dickenstein and Mercedes Pérez Millán, How far is complex balancing from detailed balancing?, preprint. arXiv:math.DS/1001.0947
  18. [DSS09]
    Mathias Drton, Bernd Sturmfels, and Seth Sullivant, Lectures on algebraic statistics, Oberwolfach seminars, vol. 39, Springer, (Birkhäuser, Basel), 2009. MATHCrossRefGoogle Scholar
  19. [ES96]
    David Eisenbud and Bernd Sturmfels, Binomial ideals, Duke Math. J. 84, no. 1 (1996), 1–45. MathSciNetMATHCrossRefGoogle Scholar
  20. [Erd50]
    Arthur Erdélyi, Hypergeometric functions of two variables, Acta Math. 83 (1950), 131–164. MathSciNetMATHCrossRefGoogle Scholar
  21. [Fei87]
    Martin Feinberg, Chemical reaction network structure and the stability of complex isothermal reactors, I. The deficiency zero and deficiency one theorems, Chem. Eng. Sci., 42, no. 10 (1987), 2229–2268. CrossRefGoogle Scholar
  22. [GGZ87]
    I.M. Gelfand, M.I. Graev, and A.V. Zelevinskiĭ, Holonomic systems of equations and series of hypergeometric type, Dokl. Akad. Nauk SSSR 295, no. 1 (1987), 14–19. Google Scholar
  23. [GKZ89]
    I.M. Gelfand, A.V. Zelevinskiĭ, and M.M. Kapranov, Hypergeometric functions and toric varieties, Funktsional. Anal. i Prilozhen. 23, no. 2 (1989), 12–26. Correction in ibid, 27, no. 4 (1993), 91. MathSciNetGoogle Scholar
  24. [Gil84]
    Robert Gilmer, Commutative semigroup rings, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1984. MATHGoogle Scholar
  25. [Gop09]
    Manoj Gopalkrishnan, An algebraic generalization of the atomic hypothesis, preprint, 2009. Google Scholar
  26. [Gru39]
    Patrick M. Grundy, Mathematics and games, Eureka 2 (1939), 6–8; reprinted 27 (1964), 9–11. Google Scholar
  27. [GS56]
    Patrick M. Grundy and C.A.B. Smith, Disjunctive games with the last player losing, Proc. Cambridge Philos. Soc. 52 (1956), 527–533. MathSciNetMATHCrossRefGoogle Scholar
  28. [GW1864]
    Cato M. Guldberg and Peter Waage (translated by H.I. Abrash), Studies concerning affinity, Journal of chemical education 63 (1986), 1044–1047. CrossRefGoogle Scholar
  29. [Gun03]
    Jeremy Gunawardena, Chemical reaction network theory for in-silico biologists, preprint, 2003. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.121.126&rep=rep1&type=pdf
  30. [GM10]
    Alan Guo and Ezra Miller, Lattice point methods for combinatorial games, Adv. in Appl. Math., 19 pages, to appear. arXiv:math.AC/0908.3473
  31. [GM10′]
    Alan Guo and Ezra Miller, Algorithms for lattice games, in preparation, 2010. Google Scholar
  32. [GMW09]
    Alan Guo, Ezra Miller, and Mike Weimerskirch, Potential applications of commutative algebra to combinatorial game theory, in Kommutative Algebra, abstracts from the April 19–25, 2009 workshop, organized by W. Bruns, H. Flenner, and C. Huneke, Oberwolfach rep. 22 (2009), 23–26. Google Scholar
  33. [GS56′]
    R.K. Guy and C.A.B. Smith, The G-values of various games, Proc. Cambridge Philos. Soc. 52 (1956), 514–526. MathSciNetMATHCrossRefGoogle Scholar
  34. [HM05]
    David Helm and Ezra Miller, Algorithms for graded injective resolutions and local cohomology over semigroup rings, J. Symbolic Computation 39 (2005), 373–395. MathSciNetMATHCrossRefGoogle Scholar
  35. [HJ72]
    Friedrich Horn and Roy Jackson, General mass action kinetics, Arch. Ration. Mech. Anal., 47, no. 2 (1972), 81–116. MathSciNetCrossRefGoogle Scholar
  36. [Hor74]
    Friedrich Horn, The dynamics of open reaction systems, in Mathematical aspects of chemical and biochemical problems and quantum chemistry (Proc. SIAM–AMS Sympos. Appl. Math., New York, 1974), pp. 125–137. SIAM–AMS Proceedings, vol. VIII, Amer. Math. Soc., Providence, R.I., 1974. Google Scholar
  37. [Hor1889]
    J. Horn, Über die konvergenz der hypergeometrischen Reihen zweier und dreier Veränderlichen, Math. Ann. 34 (1889), 544–600. MathSciNetCrossRefGoogle Scholar
  38. [Hor31]
    J. Horn, Hypergeometrische Funktionen zweier Veränderlichen, Math. Ann. 105, no. 1 (1931), 381–407. MathSciNetCrossRefGoogle Scholar
  39. [HS00]
    Serkan Hoşten and Jay Shapiro, Primary decomposition of lattice basis ideals, J. Symbolic Comput. 29, no. 4–5 (2000), 625–639, Symbolic computation in algebra, analysis, and geometry (Berkeley, CA, 1998). MathSciNetMATHGoogle Scholar
  40. [KM10]
    Thomas Kahle and Ezra Miller, Decompositions of commutative monoid congruences and binomial ideals, in preparation, 2010. Google Scholar
  41. [Kum1836]
    Ernst Eduard Kummer, Über die hypergeometrische Reihe F(α,β,x), J. Reine Angew. Math. 15 (1836). Google Scholar
  42. [Mel21]
    Hjalmar Mellin, Résolution de l’équation algébrique générale à l’aide de la fonction Γ, C.R. Acad. Sc. 172 (1921), 658–661. MATHGoogle Scholar
  43. [MMW05]
    Laura Felicia Matusevich, Ezra Miller, and Uli Walther, Homological methods for hypergeometric families, J. Amer. Math. Soc. 18, no. 4 (2005), 919–941. MathSciNetMATHCrossRefGoogle Scholar
  44. [Mil02]
    Ezra Miller, Cohen–Macaulay quotients of normal semigroup rings via irreducible resolutions, Math. Res. Lett. 9, no. 1 (2002), 117–128. MathSciNetMATHGoogle Scholar
  45. [Mil09]
    Ezra Miller, Alexander duality for monomial ideals and their resolutions, Rejecta Mathematica 1, no. 1 (2009), 18–57. arXiv:math.AC/9812095 Google Scholar
  46. [Mil10]
    Ezra Miller, Affine stratifications from finite misère quotients, preprint, 2010. arXiv:math.CO/1009.2199
  47. [MS05]
    Ezra Miller and Bernd Sturmfels, Combinatorial commutative algebra, Graduate Texts in Mathematics, vol. 227, Springer-Verlag, New York, 2005. Google Scholar
  48. [Pla05]
    Thane E. Plambeck, Taming the wild in impartial combinatorial games, Integers 5, no. 1 (2005), G5, 36 pp. (electronic) MathSciNetGoogle Scholar
  49. [Pla09]
    Thane E. Plambeck, Advances in losing, In Games of no chance 3, papers from the Combinatorial Game Theory Workshop held in Banff, AB, June 2005, edited by Michael H. Albert and Richard J. Nowakowski, MSRI Publications, Cambridge University Press, Cambridge, forthcoming. arXiv:math.CO/0603027
  50. [PS07]
    Thane E. Plambeck and Aaron N. Siegel, Misère quotients for impartial games, J. Combin. Theory Ser. A 115, no. 4 (2008), 593–622. arXiv:math.CO/0609825v5 MathSciNetMATHGoogle Scholar
  51. [SW08]
    Mathias Schulze and Uli Walther, Irregularity of hypergeometric systems via slopes along coordinate subspaces, Duke Math. J. 142, no. 3 (2008), 465–509. MathSciNetMATHCrossRefGoogle Scholar
  52. [Sie06]
    Aaron N. Siegel, Misère games and misère quotients, unpublished lecture notes. arXiv:math.CO/0612616
  53. [Sie07]
    Aaron N. Siegel, The structure and classification of misère quotients, preprint. arXiv:math.CO/0703070
  54. [Son01]
    Eduardo Sontag, Structure and stability of certain chemical networks and applications to the kinetic proofreading model of T-cell receptor signal transduction, IEEE Trans. Automat. Control, 46 (2001), 1028–1047. MathSciNetMATHCrossRefGoogle Scholar
  55. [Spr36]
    Roland P. Sprague, Über mathematische Kampfspiele [On mathematical war games], Tôhoku Math. Journal 41 (1935–1936), 438–444. Google Scholar
  56. [SK85]
    H.M. Srivastava and Per W. Karlsson, Multiple Gaussian hypergeometric series, Ellis Horwood Series: Mathematics and its Applications, Ellis Horwood Ltd., Chichester, 1985. MATHGoogle Scholar
  57. [Wei08]
    Michael Weimerskirch, An algorithm for computing indistinguishability quotients in misère impartial combinatorial games, preprint, 31 August 2008. Google Scholar
  58. [Zie95]
    Günter M. Ziegler, Lectures on polytopes, Graduate Texts in Mathematics, vol. 152, Springer-Verlag, New York, 1995. MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Mathematics DepartmentDuke UniversityDurhamUSA

Personalised recommendations