Enantioselective Catalysis with Structurally Tunable Immobilized Catalysts

Chapter
Part of the Topics in Organometallic Chemistry book series (TOPORGAN, volume 36)

Abstract

Immobilization of a chiral homogeneous catalyst can in principle ­facilitate its separation and recycling, and therefore is of considerable interest to both academia and industry. A number of methods have been developed for the immobilization of chiral catalysts, typically including using inert organic or inorganic materials as supports. However, most of the classical immobilized catalysts suffered from inferior catalytic properties to their homogeneous counterparts due to the poor accessibility, random anchoring, or disturbed geometry of the active sites in the solid matrix. In this chapter, we present the progress made in the immobilization of chiral catalysts by focusing on core-functionalized dendrimers in asymmetric catalysis, asymmetric catalysis in nanopores of mesoporous materials, and self-supported chiral catalysts for asymmetric reactions. All the three types of immobilized catalysts possess relatively well-defined structures together with a tunable chiral environment around the catalytically active centers. Representative examples selected from the researches mostly reported by Chinese chemists have demonstrated the high efficiencies and enantioselectivities of these immobilized catalysts. The impacts of supports, such as isolation or confinement effect, on the catalysis will be discussed with emphasis on their application in enantioselective synthesis.

Keywords

Asymmetric catalysis Coordination polymer Dendrimers Immobilization Nanoporous solids 

References

  1. 1.
    Noyori R (1994) Asymmetric Catalysis in Organic Synthesis. Wiley-Interscience, New YorkGoogle Scholar
  2. 2.
    Ojima I (ed) (2000) Catalytic Asymmetric Synthesis. 2 ed, Wiley-VCH Verlag GmbH, New YorkGoogle Scholar
  3. 3.
    Jacobsen EN, Pfaltz A, Yamamoto H (eds) (1999) Comprehensive Asymmetric Catalysis. Vols I–III, Springer, BerlinGoogle Scholar
  4. 4.
    Lin GQ, Li YM, Chan ASC (2001) Principles and Applications of Asymmetric Synthesis. Wiley, New YorkGoogle Scholar
  5. 5.
    Blaser, HU (2003) Chem Commun:293Google Scholar
  6. 6.
    de Vos DE, Vankelecom IF, Jacobs PA (eds) (2000) Chiral Catalyst Immobilization and Recycling. Wiley-VCH, GmbH, WeinheimGoogle Scholar
  7. 7.
    Ding K, Uozumi Y (Eds) (2008) Handbook of Asymmetric Heterogeneous Catalysis. Wiley-VCH, WeinheimGoogle Scholar
  8. 8.
    Fan QH, Li YM, Chan ASC (2002) Chem Rev 102:3385CrossRefGoogle Scholar
  9. 9.
    Trindade AF, Gois PMP, Afonso CAM (2009) Chem Rev 109:418CrossRefGoogle Scholar
  10. 10.
    McNamara CA, Dixon MJ, Bradley M (2002) Chem Rev 102:3275CrossRefGoogle Scholar
  11. 11.
    Song CE, Lee SG (2002) Chem Rev 102:3495CrossRefGoogle Scholar
  12. 12.
    Heitbaum M, Glorius F, Escher I (2006) Angew Chem Int Ed 45:4732CrossRefGoogle Scholar
  13. 13.
    Lindström UM (2002) Chem Rev 102:2751CrossRefGoogle Scholar
  14. 14.
    Song CE (2004) Chem Commun:1033Google Scholar
  15. 15.
    Jessop PG, Ikariya T, Noyori R (1999) Chem Rev 99:475CrossRefGoogle Scholar
  16. 16.
    Fraile JM, García JI, Mayoral JA (2009) Chem Rev 109:360CrossRefGoogle Scholar
  17. 17.
    Kobayashi S, Akiyama R (2003) Chem Commun:449Google Scholar
  18. 18.
    Brunner H (1995) J Organomet Chem 500:39CrossRefGoogle Scholar
  19. 19.
    Ding K, Wang Z, Wang X, Liang Y, Wang X (2006) Chem Eur J 12:5188CrossRefGoogle Scholar
  20. 20.
    Ma L, Abney C, Lin W (2009) Chem Soc Rev 38:1248CrossRefGoogle Scholar
  21. 21.
    Li C, Zhang H, Jiang D, Yang Q (2007) Chem Commun:547Google Scholar
  22. 22.
    Mehnert CP (2005) Chem Eur J 11:50CrossRefGoogle Scholar
  23. 23.
    Bergbreiter DE (2004) Top Curr Chem 242:113CrossRefGoogle Scholar
  24. 24.
    Newkome GR, Moorefield CN, Vögtle F (2001) Dendrimers and Dendrons: Concepts, Synthesis, Applications. Wiley-VCH, WeinheimGoogle Scholar
  25. 25.
    Fréchet JMJ, Tomalia DA (2002) Dendrimers and Other Dendritic Polymers. Wiley, Chichester, EnglandGoogle Scholar
  26. 26.
    Knapen JWJ, van der Made AW, de Wilde JC, van Leeuwen PWNM, Wijkens P, Grove DM, van Koten G (1994) Nature 372:659CrossRefGoogle Scholar
  27. 27.
    Oosterom GE, Reek JNH, Kamer PCJ, van Leeuwen PWNM (2001) Angew Chem Int Ed 40:1828CrossRefGoogle Scholar
  28. 28.
    Astruc D, Chardac F (2001) Chem Rev 101:2991CrossRefGoogle Scholar
  29. 29.
    van Heerbeek R, Kamer PCJ, van Leeuwen PWNM, Reek JNH (2002) Chem Rev 102:3717CrossRefGoogle Scholar
  30. 30.
    Gade LH (2006) Top Organomet Chem 20:61CrossRefGoogle Scholar
  31. 31.
    Fan QH, Deng GJ, Feng Y, He YM (2008) Enantioselective Catalysis Using Dendrimer Supports. pp131 In: Ding K, Uozumi Y (Eds) Handbook of Asymmetric Heterogeneous Catalysis. Wiley-VCH: Weinheim.Google Scholar
  32. 32.
    Hecht S, Fréchet JMJ (2001) Angew Chem Int Ed 40:74CrossRefGoogle Scholar
  33. 33.
    Helms B, Fréchet JMJ (2006) Adv Synth Catal 348:1125CrossRefGoogle Scholar
  34. 34.
    Seebach D, Rheiner PB, Greiveldinger G, Butz T, Sellner H (1998) Top Curr Chem 197:125CrossRefGoogle Scholar
  35. 35.
    Tang W, Zhang X (2003) Chem Rev 103:3029CrossRefGoogle Scholar
  36. 36.
    Caminade AM, Servin P, Laurent R, Majoral JP (2008) Chem Soc Rev 37:56CrossRefGoogle Scholar
  37. 37.
    Yu J, RajanBabu TV, Parquette JR (2008) J Am Chem Soc 130:7845CrossRefGoogle Scholar
  38. 38.
    Kassube JK, Wadepohl H, Gade LH (2009) Adv Synth Catal 351:607CrossRefGoogle Scholar
  39. 39.
    Fan QH, Chen YM, Chen XM, Jiang DZ, Xi F, Chan ASC (2000) Chem Commun:789Google Scholar
  40. 40.
    Deng GJ, Fan QH, Chen XM (2002) Chin J Chem 20:1139CrossRefGoogle Scholar
  41. 41.
    Zhou YG (2007) Acc Chem Res 40:1357CrossRefGoogle Scholar
  42. 42.
    Wang ZJ, Deng GJ, Li Y, He YM, Tang WJ, Fan QH (2007) Org Lett 9:1243CrossRefGoogle Scholar
  43. 43.
    Deng GJ, Fan QH, Chen XM, Liu DS, Chan ASC (2002) Chem Commun:1570Google Scholar
  44. 44.
    Bergbreiter DE, Osburn PL, Smith T, Li CM, Frels JD (2003) J Am Chem Soc 125:6254Google Scholar
  45. 45.
    Huang YY, He YM, Zhou HF, Wu L, Li BL, Fan QH (2006) J Org Chem 71:2874CrossRefGoogle Scholar
  46. 46.
    van Leeuwen PWNM, Kamer PCJ, Reek JNH, Dierkes P (2000) Chem Rev 100:2741Google Scholar
  47. 47.
    Deng GJ, Li GR, Zhu LY, Zhou HF, He YM, Fan QH, Shuai ZG (2006) J Mol Catal A: Chem 244:118CrossRefGoogle Scholar
  48. 48.
    Yi B, Fan QH, Deng GJ, He YM, Qiu LQ, Chan ASC (2004) Org Lett 6:1361CrossRefGoogle Scholar
  49. 49.
    Minnaard AJ, Feringa BL, Lefort L, de Vries JG (2007) Acc Chem Res 40:1267CrossRefGoogle Scholar
  50. 50.
    Tang WJ, Huang YY, He YM, Fan QH (2006) Tetrahedron: Asymmetry 17:536CrossRefGoogle Scholar
  51. 51.
    Zhang F, Li Y, Li ZW, He YM, Zhu SF, Fan QH, Zhou QL (2008) Chem Commun 6048Google Scholar
  52. 52.
    Ribaudo F, van Leeuwen PWNM, Reek JNH (2006) Top Organomet Chem 20:39CrossRefGoogle Scholar
  53. 53.
    Li Y, He YM, Li ZW, Zhang F, Fan QH (2009) Org Biomol Chem 7:1890CrossRefGoogle Scholar
  54. 54.
    Fache F, Schulz E, Tommasino ML, Lemaire M (2000) Chem Rev 100:2159CrossRefGoogle Scholar
  55. 55.
    Hashiguchi S, Fujii A, Takehara J, Ikariya T, Noyori R (1995) J Am Chem Soc 117:7562CrossRefGoogle Scholar
  56. 56.
    Chen YC, Wu TF, Deng JG, Liu H, Jiang YZ, Choi MCK, Chan ASC (2001) Chem Commun:1488Google Scholar
  57. 57.
    Jiang L, Wu TH, Chen YC, Zhu J, Deng JG (2006) Org Biomol Chem 4:3319CrossRefGoogle Scholar
  58. 58.
    Liu WG, Cui X, Cun L, Zhu J, Deng JG (2005) Tetrahedron: Asymmetry 16:2525CrossRefGoogle Scholar
  59. 59.
    Liu WG, Cui X, Cun L, Wu J, Zhu J, Deng JG, Fan QH (2005) Synlett:1591Google Scholar
  60. 60.
    Bolm C, Derrien N, Seger A (1996) Synlett:387Google Scholar
  61. 61.
    Peerlings HWI, Meijer EW (1997) Chem Eur J 3:1563Google Scholar
  62. 62.
    Soai K, Sato I (2003) C R Chim 6:1097CrossRefGoogle Scholar
  63. 63.
    Liu XY, Wu XY, Chai Z, Wu YY, Zhao G, Zhu SZ (2005) J Org Chem 70:7432CrossRefGoogle Scholar
  64. 64.
    Chai Z, Liu XY, Zhang JK, Zhao G (2007) Tetrahedron: Asymmetry 18:724CrossRefGoogle Scholar
  65. 65.
    Li Y, Liu XY, Zhao G (2006) Tetrahedron: Asymmetry 17:2034CrossRefGoogle Scholar
  66. 66.
    Zhao YH, Zheng CW, Zhao G, Cao WG (2008) Tetrahedron: Asymmetry 19:701CrossRefGoogle Scholar
  67. 67.
    Wang GY, Liu XY, Zhao G (2006) Synlett:1150Google Scholar
  68. 68.
    Wang GY, Zheng C, Zhao G (2006) Tetrahedron: Asymmetry 17:2074CrossRefGoogle Scholar
  69. 69.
    Liu XY, Li Y, Wang GY, Chai Z, Wu YY, Zhao G (2006) Tetrahedron: Asymmetry 17:750CrossRefGoogle Scholar
  70. 70.
    Wu YY, Zhang YZ, Yu ML, Zhao G, Wang SW (2006) Org Lett 8:4417CrossRefGoogle Scholar
  71. 71.
    Jørgensen KA (2000) Angew Chem Int Ed 39:3558CrossRefGoogle Scholar
  72. 72.
    Ji BM, Yuan Y, Ding KL, Meng JB (2003) Chem Eur J 9:5989CrossRefGoogle Scholar
  73. 73.
    Li C (2004) Catal Rev Sci Eng 46:419CrossRefGoogle Scholar
  74. 74.
    Davis ME (2002) Nature 417:813CrossRefGoogle Scholar
  75. 75.
    Thomas JM, Raja AR (2008) Acc Chem Res 41:708CrossRefGoogle Scholar
  76. 76.
    Johnson BFG, Raynor SA, Shephard DS, Mashmeyer T, Thomas JM, Sankar G, Bromley S, Oldroyd R, Gladden L, Mantle MD (1999) Chem Commun:1167Google Scholar
  77. 77.
    Yang Q, Han D, Yang H, Li C (2008) Chem Asian J 3:1214CrossRefGoogle Scholar
  78. 78.
    Fraile JM, García JI, Herrerías CI, Mayoral JA, Pires E (2009) Chem Soc Rev 38:695CrossRefGoogle Scholar
  79. 79.
    Xia QH, Ge HQ, Ye CP, Liu ZM, Su KX (2005) Chem Rev 105:1603CrossRefGoogle Scholar
  80. 80.
    Xiang S, Zhang Y, Xin Q, Li C (2002) Chem Commun:2696Google Scholar
  81. 81.
    Zhang H, Xiang S, Xiao J, Li C (2005) J Mol Catal A: Chem 238:175CrossRefGoogle Scholar
  82. 82.
    Zhang H, Xiang S, Li C (2005) Chem Commun:1209Google Scholar
  83. 83.
    Zhang H, Zhang Y, Li C (2006) J Catal 238:369CrossRefGoogle Scholar
  84. 84.
    Zhang H, Li C (2006) Tetrahedron 62:6640CrossRefGoogle Scholar
  85. 85.
    Kureshy RI, Ahmad I, Khan NH, Abdi SHR, Singh S, Pandia PH, Jasram RV (2005) J Catal 235:28CrossRefGoogle Scholar
  86. 86.
    Kureshy RI, Ahmad I, Khan NH, Abdi SHR, Pathak K, Jasra RV (2006) J Catal 238:134CrossRefGoogle Scholar
  87. 87.
    Yu K, Gu Z, Ji R, Lou LL, Ding F, Zhang C, Liu S (2007) J Catal 252:312CrossRefGoogle Scholar
  88. 88.
    Corma A, García H (2004) Eur J Inorg Chem 6:1143CrossRefGoogle Scholar
  89. 89.
    Yang HQ, Zhang L, Su WG, Yang QH, Li C (2007) J Catal 248:204CrossRefGoogle Scholar
  90. 90.
    Yang H, Li J, Yang J, Liu Z, Yang QH, Li C (2007) Chem Commun:1086Google Scholar
  91. 91.
    Jacobsen EN (2000) Acc Chem Res 33:421CrossRefGoogle Scholar
  92. 92.
    Breinbause R, Jacobsen EN (2000) Angew Chem Int Ed 39:3604CrossRefGoogle Scholar
  93. 93.
    Yang HQ, Zhang L, Zhong L, Yang QH, Li C (2007) Angew Chem Int Ed 46:6861CrossRefGoogle Scholar
  94. 94.
    Kinting A, Krause H, Capka M (1985) J Mol Catal 33:215CrossRefGoogle Scholar
  95. 95.
    Liu G, Yao M, Wang J, Lu X, Liu M, Zhang F, Li H (2008) Adv Synth Catal 350:1464CrossRefGoogle Scholar
  96. 96.
    Liu G, Yao M, Zhang F, Gao Y, Li H (2008) Chem Commun:347Google Scholar
  97. 97.
    Jiang DM, Yang QH, Yang J, Zhang L, Zhu GR, Su WG, Li C (2005) Chem Mater 17:6154CrossRefGoogle Scholar
  98. 98.
    Jiang DM, Yang QH, Wang H, Zhu GR, Yang J, Li C (2006) J Catal 239:65CrossRefGoogle Scholar
  99. 99.
    Jiang DM, Gao JS, Yang QH, Yang J, Li C (2006) Chem Mater 18:6012CrossRefGoogle Scholar
  100. 100.
    Jiang DM, Gao JS, Li J, Yang QH, Li C (2008) Microporous Mesoporous Mater 113:385CrossRefGoogle Scholar
  101. 101.
    Asefa T, MacLachlan MJ, Coombs N, Ozin GA (1999) Nature 402:867Google Scholar
  102. 102.
    Alvaro M, Benitez M, Das D, Ferrer B, García H (2004) Chem Mater 16:2222CrossRefGoogle Scholar
  103. 103.
    Dai LX (2004) Angew Chem Int Ed 43:5726CrossRefGoogle Scholar
  104. 104.
    Ding K, Wang Z, Shi L (2007) Pure Appl Chem 79:1529CrossRefGoogle Scholar
  105. 105.
    Wang Z, Chen G, Ding K (2009) Chem Rev 109:322CrossRefGoogle Scholar
  106. 106.
    Ngo HL, Lin W (2005) Top Catal 34:85CrossRefGoogle Scholar
  107. 107.
    Seo JS, Whang D, Lee H, Jun SI, Oh J, Jeon YJ, Kim K (2000) Nature 404:982CrossRefGoogle Scholar
  108. 108.
    Takizawa S, Somei H, Jayaprakash D, Sasai H (2003) Angew Chem Int Ed 42:5711CrossRefGoogle Scholar
  109. 109.
    Guo H, Wang X, Ding K (2004) Tetrahedron Lett 45:2009CrossRefGoogle Scholar
  110. 110.
    Wang X, Wang X, Guo H, Wang Z, Ding K (2005) Chem Eur J 11:4078CrossRefGoogle Scholar
  111. 111.
    Mikami K, Matsukawa S (1997) Nature 385:613CrossRefGoogle Scholar
  112. 112.
    Long J, Hu J, Shen X, Ji B, Ding K (2002) J Am Chem Soc 124:10CrossRefGoogle Scholar
  113. 113.
    Harada T, Nakatsugawa M (2006) Synlett:321Google Scholar
  114. 114.
    Komatsu N, Hashizume M, Sugita T, Uemura S (1993) J Org Chem 58:4529CrossRefGoogle Scholar
  115. 115.
    Bougauchi M, Watanabe S, Arai T, Sasai H, Shibasaki M (1997) J Am Chem Soc 119:2329CrossRefGoogle Scholar
  116. 116.
    Wang XW, Shi L, Li MX, Ding K (2005) Angew Chem Int Ed 44:6362CrossRefGoogle Scholar
  117. 117.
    Wang H, Wang Z, Ding K (2009) Tetrahedron Lett 50:2200CrossRefGoogle Scholar
  118. 118.
    van den Berg M, Minnaard AJ, Schudde EP, van Esch J, de Vries AHM, de Vries JG, Feringa BL (2000) J Am Chem Soc 122:11539CrossRefGoogle Scholar
  119. 119.
    Wang XW, Ding K (2004) J Am Chem Soc 126:10524CrossRefGoogle Scholar
  120. 120.
    Shi L, Wang W, Sandoval CA, Wang Z, Li H, Wu J, Yu L, Ding K (2009) Chem Eur J 15:9855CrossRefGoogle Scholar
  121. 121.
    Shi L, Wang XW, Sandoval CA, Li MX, Qi QY, Li ZT, Ding K (2006) Angew Chem Int Ed 45:4108CrossRefGoogle Scholar
  122. 122.
    Yu L, Wang Z, Wu J, Tu S, Ding K (2010) Angew Chem Int Ed:49:3627Google Scholar
  123. 123.
    Liang YX, Jing Q, Li X, Shi L, Ding K (2005) J Am Chem Soc 127:7694CrossRefGoogle Scholar
  124. 124.
    Liang YX, Wang Z, Ding K (2006) Adv Synth Catal 348:1533CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of ChemistryChinese Academy of Sciences (CAS)BeijingP.R. China
  2. 2.State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic ChemistryChinese Academy of SciencesShanghaiP.R. China

Personalised recommendations