Design and Development of an Optimal-Control-Based Framework for Trajectory Planning, Threat Assessment, and Semi-autonomous Control of Passenger Vehicles in Hazard Avoidance Scenarios

  • Sterling J. Anderson
  • Steven C. Peters
  • Tom E. Pilutti
  • Karl Iagnemma
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 70)


This paper describes the design of an optimal-control-based active safety framework that performs trajectory planning, threat assessment, and semi-autonomous control of passenger vehicles in hazard avoidance scenarios. This framework allows for multiple actuation modes, diverse trajectory-planning objectives, and varying levels of autonomy. A model predictive controller iteratively plans a best-case vehicle trajectory through a navigable corridor as a constrained optimal control problem. The framework then uses this trajectory to assess the threat posed to the vehicle and intervenes in proportion to this threat. This approach minimizes controller intervention while ensuring that the vehicle does not depart from a navigable corridor of travel. Simulation and experimental results are presented here to demonstrate the framework’s ability to incorporate configurable intervention laws while sharing control with a human driver.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    National Highway Traffic Safety Administration (NHTSA), 2007 Traffic Safety Annual Assessment - Highlights, NHTSA National Center for Statistics and Analysis (2008)Google Scholar
  2. 2.
    Weilkes, M., Burkle, L., Rentschler, T., Scherl, M.: Future vehicle guidance assistance - combined longitudinal and lateral control. In: Automatisierungstechnik, vol. 42, pp. 4-10 (January 2005)Google Scholar
  3. 3.
    Leonard, J., How, J., Teller, S., Berger, M., Campbell, S., Fiore, G., Fletcher, L., Frazzoli, E., Huang, A., Karaman, S., Koch, O., Kuwata, Y., Moore, D., Olson, E., Peters, S., Teo, J., Truax, R., Walter, M., Barrett, D., Epstein, A., Maheloni, K., Moyer, K., Jones, T., Buckley, R., Antone, M., Galejs, R., Krishnamurthy, S., Williams, J.: A perception-driven autonomous urban vehicle. Journal of Field Robotics 25, 727–774 (2008)CrossRefGoogle Scholar
  4. 4.
    Jansson, J.: Collision avoidance theory with application to automotive collision mitigation. Doctoral Dissertation, Linkoping University (2005)Google Scholar
  5. 5.
    Pohl, J., Birk, W., Westervall, L.: A driver-distraction-based lane-keeping assistance system. Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering 221, 541–552 (2007)CrossRefGoogle Scholar
  6. 6.
    Mobus, R., Zomotor, Z.: Constrained optimal control for lateral vehicle guidance. In: Proceedings of the 2005 IEEE Intelligent Vehicles Symposium, June 6-8, pp. 429–434. IEEE, Piscataway (2005)CrossRefGoogle Scholar
  7. 7.
    Alleyne, A.: A comparison of alternative obstacle avoidance strategies for vehicle control. Vehicle System Dynamics 27, 371–392 (1997)CrossRefGoogle Scholar
  8. 8.
    Netto, M., Blosseville, J., Lusetti, B., Mammar, S.: A new robust control system with optimized use of the lane detection data for vehicle full lateral control under strong curvatures. In: ITSC 2006: 2006 IEEE Intelligent Transportation Systems Conference, September 17–20, pp. 1382–1387. Institute of Electrical and Electronics Engineers Inc., Piscataway (2006)CrossRefGoogle Scholar
  9. 9.
    Vaidyanathan, R., Hocaoglu, C., Prince, T.S., Quinn, R.D.: Evolutionary path planning for autonomous air vehicles using multiresolution path representation. In: 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, October 29-November 3, pp. 69–76. Institute of Electrical and Electronics Engineers Inc. (2001)Google Scholar
  10. 10.
    Rossetter, E.J., Christian Gardes, J.: Lyapunov based performance guarantees for the potential field lane-keeping assistance system. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME 128, 510–522 (2006)CrossRefGoogle Scholar
  11. 11.
    Falcone, P., Tufo, M., Borrelli, F., Asgarit, J., Tseng, H.: A linear time varying model predictive control approach to the integrated vehicle dynamics control problem in autonomous systems. In: 46th IEEE Conference on Decision and Control 2007 (CDC), December 12–14, pp. 2980–2985. Institute of Electrical and Electronics Engineers Inc., Piscataway (2008)Google Scholar
  12. 12.
    Engelman, G., Ekmark, J., Tellis, L., Tarabishy, M.N., Joh, G.M., Trombley, R.A., Williams, R.E.: Threat level identification and quantifying system. U.S. Patent US 7034668 B2 April 25 (2006)Google Scholar
  13. 13.
    Yu, H., Spenko, M., Dubowsky, S.: An adaptive shared control system for an intelligent mobility aid for the elderly. Autonomous Robots 15, 53–66 (2003)CrossRefGoogle Scholar
  14. 14.
    Guo, L., Wang, J., Li, K.: Lane keeping system based on THASV-II platform. In: IEEE International Conference on Vehicular Electronics and Safety (ICVES 2006), December 13-15, pp. 305–308. Institute of Electrical and Electronics Engineers Computer Society, Piscataway (2006)Google Scholar
  15. 15.
    McBride, J.R., Ivan, J.C., Rhode, D.S., Rupp, J.D., Rupp, M.Y., Higgins, J.D., Turner, D.D., Eustice, R.M.: A perspective on emerging automotive safety applications, derived from lessons learned through participation in the DARPA Grand Challenges. Journal of Field Robotics 25, 808–840 (2008)CrossRefGoogle Scholar
  16. 16.
    Zomotor, Z., Franke, U.: Sensor fusion for improved vision based lane recognition and object tracking with range-finders. In: Proceedings of the 1997 IEEE Conference on Intelligent Transportation Systems, ITSC, November 9–12, pp. 595–600. IEEE, Piscataway (1997)CrossRefGoogle Scholar
  17. 17.
    Garcia, C., Prett, D., Morari, M.: Model predictive control: theory and practice-a survey. Automatica 25, 335–348 (1989)CrossRefMATHGoogle Scholar
  18. 18.
    Falcone, P., Borrelli, F., Asgari, J., Tseng, H.E., Hrovat, D.: Predictive active steering control for autonomous vehicle systems. IEEE Transactions on Control Systems Technology 15, 566–580 (2007)CrossRefGoogle Scholar
  19. 19.
    Keviczky, T., Falcone, P., Borrelli, F., Asgari, J., Hrovat, D.: Predictive control approach to autonomous vehicle steering. In: 2006 American Control Conference, June 14-16, pp. 4670–4675. Institute of Electrical and Electronics Engineers Inc., Piscataway (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Sterling J. Anderson
    • 1
  • Steven C. Peters
    • 1
  • Tom E. Pilutti
    • 2
  • Karl Iagnemma
    • 1
  1. 1.Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Ford Research LaboratoriesDearbornUSA

Personalised recommendations