Enhanced Mother Environment with Humanoid Specialization in IRT Robot Systems

  • Masayuki Inaba
  • Key Okada
  • Tomoaki Yoshikai
  • Ryo Hanai
  • Kimitoshi Yamazaki
  • Yuto Nakanishi
  • Hiroaki Yaguchi
  • Naotaka Hatao
  • Junya Fujimoto
  • Mitsuharu Kojima
  • Satoru Tokutsu
  • Kunihiko Yamamoto
  • Yohei Kakiuchi
  • Toshiaki Maki
  • Shunnichi Nozawa
  • Ryohei Ueda
  • Ikuo Mizuuchi
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 70)

Abstract

In the research to realize high standard task-oriented assistant robots, a general and strategic way of development is essential. Otherwise high functionality and potential for evolution of those robots cannot be achieved. Robotic systems are socially expected to assist our daily life in many situations. As a result, projects related to those robots are becoming large, involving many researchers and engineers of universities and companies. This motivated us a new strategy to construct robotic systems based on mother environment and humanoid specialization to keep developing and refining functional elements of robots in an evolutionary way. The mother environment is an entity that creates brains of humanoid robots, where various robotics function elements, libraries, middle-wares and other research tools are integrated. Then the brain of each robot is developed utilizing the functional elements in the mother. We call this process specialization of a humanoid. To enhance this specialization process, we introduce a generator, which realizes conversion of functions in the mother environment for the real-time layer. After the research of these specific robots, enhanced robotics functions are incorporated into the mother again. We call this process feedback. In this chapter, we present these ideas using concrete implementation examples in IRT projects[1], where several robots to assist our daily life are developed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Ogasawara, T., lnoue, H.: Cosmos: A total programming system for integrated intelligent robot study. Journal of Robot Society of Japan 2(6), 507–525 (1984)Google Scholar
  3. 3.
    Inoue, H.: Building a bridge between ai and robotics. In: Proceedings of International Joint Conference on Artificial Intelligence, pp. 1231–1237 (1985)Google Scholar
  4. 4.
    Inoue, H.: Vision based robot behavior: Tools and testbeds for real world ai research. In: Proceedings of International Joint Conference on Artificial Intelligence, pp. 767–773 (1993)Google Scholar
  5. 5.
    Inoue, H., Inaba, M.: Hand-eye coordination in rope handling. In: Robotics Research: The First International Symposium, pp. 163–174. MIT Press, Cambridge (1984)Google Scholar
  6. 6.
    Inaba, M., Inoue, H.: Vision-based robot programming. In: Robotics Research; 5th International Symposium on Robotics Research (ISRR5), pp. 129–136 (1989)Google Scholar
  7. 7.
    Kuniyoshi, Y., Inaba, M., Inoue, H.: Learning by watching: Extracting reusable task knowledge from visual observation of human performance. IEEE Transactions on Robotics and Automation 10(6), 799–822 (1994)CrossRefGoogle Scholar
  8. 8.
    Matsui, T., Inaba, M.: EusLisp: An Object-Based Implementation of Lisp. Journal of Information Processing 13(3), 327–338 (1990)Google Scholar
  9. 9.
    Inaba, M., Kagami, S., Kanehiro, F., Nagasaka, K., Inoue, H.: Mother operations to evolve embodied robots based on the remote-brained approach, pp. 319–326 (1997)Google Scholar
  10. 10.
    Inaba, M.: Developmental processes in remote-brained humanoids. In: Shirai, Y., Hirose, S. (eds.) Robotics Research: The Eighth International Symposium, pp. 344–355 (1998)Google Scholar
  11. 11.
    Inaba, M., Kagami, S., Kanehiro, F., Hoshino, Y., Inoue, H.: A platform for robotics research based on the remote-brained robot approach. The International Journal of Robotics Research 19(10), 933–954 (2000)CrossRefGoogle Scholar
  12. 12.
    Inaba, M.: Remote-brained robotics: Interfacing ai with real world behaviors. In: Robotics Research: The Sixth International Symposium, pp. 335–344 (1993)Google Scholar
  13. 13.
    Inaba, M., Kagami, S., Ishikawa, T., Kanehiro, F., Takeda, K., Inoue, H.: Vision-based adaptive and interactive behaviors in mechanical animals using the remote-brained approach. Robotics and Autonomous Systems 17(1-2), 35–52 (1996)CrossRefGoogle Scholar
  14. 14.
    Inaba, M., Kanehiro, F., Kagami, S., Inoue, H.: Remote-brained ape-like robot to study full-body mobile behaviors based on simulated models and real-time vision. Advanced Robotics 11(6), 653–668 (1997)CrossRefGoogle Scholar
  15. 15.
    Sato, T., Inoue, H.: Humanoid autonomous system.RWC Technical Report, pp. 109–110 (1994)Google Scholar
  16. 16.
    Kagami, S., Nishiwaki, K., Kuffner, J.J., Kuniyoshi, Y., Inaba, M., Inoue, H.: Design and implementation of software research platform for humanoid robotics: H7. In: Proceedings of the 2001 IEEE-RAS International Conference on Humanoid Robots, pp. 253–258 (2001)Google Scholar
  17. 17.
    Nishiwaki, K., Kagami, S., Kuffner, J.J., Okada, K., Kuniyoshi, Y., Inaba, M., Inoue, H.: Online humanoid locomotion control using 3d vision information. In: Proceedings of 8th International Symposium on Experimental Robotics, ISER 2002 (2002)Google Scholar
  18. 18.
    Kagami, S., Kuffner, J.J., Nishiwaki, K., Kuniyoshi, Y., Okada, K., Inaba, M., Inoue, H.: Humanoid arm motion planning using stereo vision and rrt search. Journal of Robotics and Mechatronics 15(2), 200–207 (2003)Google Scholar
  19. 19.
    Okada, K., Inaba, M., Inoue, H.: Integration of Real-time Binocular Stereo Vision and Whole Body Information for Dynamic Walking Navigation of Humanoid Robot. In: Proceedings of International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI 2003), pp. 131–136 (2003)Google Scholar
  20. 20.
    Inoue, H., Tachi, S., Tanie, K., Yokoi, K., Hirai, S., Hirukawa, H., Hirai, K., Nakayama, S., Sawada, K., Nishiyama, T., Miki, O., Itoko, T., Inaba, H., Sudo, M.: HRP: Humaonid Robotics Project of MITI. In: Proceedings of the First IEEE-RAS International Conference on Humanoid Robots, Humanoids 2000 (2000)Google Scholar
  21. 21.
    Okada, K., Kojima, M., Sagawa, Y., Ichino, T., Sato, K., Inaba, M.: Vision based behavior verification system of humanoid robot for daily environment tasks. In: 2006 6th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2006), pp. 7–12 (December 2006)Google Scholar
  22. 22.
    Okada, K., Ogura, T., Haneda, A., Kousaka, D., Nakai, H., Inaba, M., Inoue, H.: Integrated System Software for HRP2 Humanoid. In: Proceedings of The 2004 IEEE International Conference on Robotics and Automation (April 2004)Google Scholar
  23. 23.
    Mizuuchi, I., Yoshida, S., Inaba, M., Inoue, H.: The development and control of the flexible-spine of a human-form robot. Advanced Robotics 17(2), 179–196 (2003)CrossRefGoogle Scholar
  24. 24.
    Inaba, M., Mizuuchi, I., Tajima, R., Yoshikai, T., Sato, D., Nagashima, K., Inoue, H.: Building spined mustle-tendon humanoid, pp. 113–127 (2003)Google Scholar
  25. 25.
    Mizuuchi, I., Tajima, R., Yoshikai, T., Sato, D., Nagashima, K., Inaba, M., Kuniyoshi, Y., Inoue, H.: The Design and Control of the Flexible Spine of a Fully Tendon-Driven Humanoid “Kenta”. In: Proceedings of the 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2527–2532 (October 2002)Google Scholar
  26. 26.
    Mizuuchi, I., Yoshikai, T., Sodeyama, Y., Nakanishi, Y., Miyadera, A., Yamamoto, T., Niemel, T., Hayashi, M., Urata, J., Namiki, Y., Nishino, T., Inaba, M.: Development of musculoskeletal humanoid kotaro. In: Proceedings of The 2006 IEEE International Conference on Robotics and Automation, pp. 82–87 (May 2006)Google Scholar
  27. 27.
    Mizuuchi, I., Nakanishi, Y., Sodeyama, Y., Namiki, Y., Nishino, T., Muramatsu, N., Urata, J., Hongo, K., Yoshikai, T., Inaba, M.: An advanced musculoskeletal humanoid kojiro. In: Proceedings of the 2007 IEEE-RAS International Conference on Humanoid Robots, Humanoids 2007 (December 2007)Google Scholar
  28. 28.
    Inaba, M.: Extended vision with robot sensor suit: Primary sensor image approach in interfacing body to brain. In: Giralt, G., Hirzinger, G. (eds.) Robotics Research: The Seventh International Symposium, pp. 499–508 (1996)Google Scholar
  29. 29.
    Hayashi, M., Sagisaka, T., Ishizaka, Y., Yoshikai, T., Inaba, M.: Development of functional whole-body flesh with distributed three-axis force sensors to enable close interaction by humanoids. In: Proceedings of The 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3610–3615 (October 2007)Google Scholar
  30. 30.
    Yoshikai, T., Hayashi, M., Kadowaki, A., Goto, T., Inaba, M.: Design and development of a humanoid with soft 3d-deformable sensor flesh and automatic recoverable mechanical overload protection mechanism. In: Proceedings of IEEE/RSJ 2009 International Conference on Intelligent Robots and Systems, pp. 4977–4983 (2009)Google Scholar
  31. 31.
    Urata, J., Hirose, T., Yuta, N., Nakanishi, Y., Mizuuchi, I., Inaba, M.: Thermal control of electrical motors for high-power humanoid robots. In: Proceedings of The 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2047–2052 (September 2008)Google Scholar
  32. 32.
    Matsui, T.: Multithread Object-Oriented Language EusLisp for Parallel and Asynchronous Programming in Robotics. In: Workshop on Concurrent Object-based Systems, IEEE 6th Symposium on Parallel and Distributed Processing (1994)Google Scholar
  33. 33.
    Hirukawa, H., Kanehiro, F., Kaneko, K., Kajita, S., Fujiwara, K., Kawai, Y., Tomita, F., Hirai, S., Tanie, K., Isozumi, T., Akechi, K., Kawasaki, T., Ota, S., Yokoyama, K., Honda, H., Fukase, Y., Maeda, J., Nakamura, Y., Tachi, S., Inoue, H.: Humanoid Robotics Platforms developed in HRP. In: Proceedings of the 2003 IEEE-RAS International Conference on Humanoid Robots, Humanoids 2003 (2003)Google Scholar
  34. 34.
    Kanehiro, F., Fujiwara, K., Kajita, S., Yokoi, K., Kaneko, K., Hirukawa, H.: Open Architecture Humanoid Robot Platform. In: Proceedings of the 2002 IEEE International Conference on Robotics and Automation (ICRA 2002), pp. 24–30 (2002)Google Scholar
  35. 35.
    Bradski, G., Kaehler, A.: Learning opencv (2008)Google Scholar
  36. 36.
    Larsen, E., Gottschalk, S., Lin, M.C., Manocha, D.: Fast proximity queries with swept sphere volumes. In: Proceedings of The 2000 IEEE International Conference on Robotics and Automation, pp. 3719–3726 (2000)Google Scholar
  37. 37.
    Open Dynamics Engine ODE, http://ode.com
  38. 38.
  39. 39.
  40. 40.
    Yuasa, T.: Real-time garbage collection on general-purpose machines 11(3), 181–198 (1990)Google Scholar
  41. 41.
    Printezis, T., Detlefs, D.: A generational mostly-concurrent garbage collector. In: ISMM 2000: Proceedings of the 2nd international symposium on Memory management, pp. 143–154. ACM Press, New York (2000)CrossRefGoogle Scholar
  42. 42.
    Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T.B., Leibs, J., Wheeler, R., Ng, A.Y.: Ros: an open-source robot operating system. In: International Conference on Robotics and Automation. Open-Source Software workshop (2009)Google Scholar
  43. 43.
    Jackson, J.: Microsoft robotics studio: A technical introduction. IEEE Robotics and Automation Magazine (2007)Google Scholar
  44. 44.
    Ando, N., Suehiro, T., Kitagaki, K., Kotoku, T., Yoon, W.: Rt-middleware: Distributed component middleware for rt (robot technology). In: Proceedings of IEEE International Conference on Intelligent Robots and Systems, pp. 3555–3560 (2005)Google Scholar
  45. 45.
    Yamazaki, K., Ueda, R., Nozawa, S., Mori, Y., Maki, T., Hatao, N., Okada, K., Inaba, M.: A demonstrative research for daily assistive robots on tasks of cleaning and tidying up rooms. In: First International Symposium on Quality of Life Technology (June 2009)Google Scholar
  46. 46.
    Yamazaki, K., Inaba, M.: A cloth detection method based on wrinkle features for daily assistive robots. In: IAPR International Conference on Machine Vision and Applications, pp. 366–369 (May 2009)Google Scholar
  47. 47.
    Mizuuchi, I., Fujimoto, J., Yamamoto, K., Sodeyama, Y., Muramatsu, N., Ohta, S., Hongo, K., Hirose, T., Inaba, M.: A kitchen assistant robot with a variety of sensors embedded in the hand to clear away dishes. In: First International Symposium on Quality of Life Technology, pp. K (June 2009)Google Scholar
  48. 48.
    Fujimoto, J., Mizuuchi, I., Sodeyama, Y., Yamamoto, K., Muramatsu, N., Ohta, S., Hirose, T., Hongo, K., Okada, K., Inaba, M.: Picking up dishes based on active groping with multisensory robot hand. In: 18th IEEE International Symposium on Robot and Human Interactive Communication, pp. 220–225 (September 2009)Google Scholar
  49. 49.
    Tanaka, Y., Nakai, A., Iwase, E., Goto, T., Matsumoto, K., Shimoyama, I.: Triaxial tactile sensor chips with piezoresistive cantilevers mountable on curved surface. In: Proceedings of Asia-Pacific Conference on Transducers and Micro-Nano Technology 2008 (APCOT 2008), pp. 1B1–1 (2008)Google Scholar
  50. 50.
    Nakao, M., Sawasaki, N.: Development of image recognition module with linux for common basis for next-generation robots and rt components for image recognition. In: The 27th Annual Conference of the Robotics Society of Japan (2009)Google Scholar
  51. 51.
    Inoue, H., Tachikawa, T., Inaba, M.: Robot vision system with a correlation chip for real-time tracking, optical flow and depth map generation. In: Proceedings of the 1992 IEEE International Conference on Robotics and Automation, pp. 1621–1626 (1992)Google Scholar
  52. 52.
    Kojima, M., Shirayama, S., Ueki, R., Okada, K., Inaba, M.: Recognition and recording of human access to a shelf by a care assit robot with cameras with multi varaible views. In: The 27th Annual Conference of the Robotics Society of JapanGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Masayuki Inaba
    • 1
  • Key Okada
    • 1
  • Tomoaki Yoshikai
    • 1
  • Ryo Hanai
    • 1
  • Kimitoshi Yamazaki
    • 1
  • Yuto Nakanishi
    • 1
  • Hiroaki Yaguchi
    • 1
  • Naotaka Hatao
    • 1
  • Junya Fujimoto
    • 1
  • Mitsuharu Kojima
    • 1
  • Satoru Tokutsu
    • 1
  • Kunihiko Yamamoto
    • 1
  • Yohei Kakiuchi
    • 1
  • Toshiaki Maki
    • 1
  • Shunnichi Nozawa
    • 1
  • Ryohei Ueda
    • 1
  • Ikuo Mizuuchi
    • 1
  1. 1.The University of TokyoTokyoJapan

Personalised recommendations