Phased Small RNAs in Rice

  • Lewis H. Bowman
  • Cameron Johnson
  • Gail Pruss
  • Vicki Vance
Part of the RNA Technologies book series (RNATECHN)


Small RNAs have emerged as important regulators of gene expression in eukaryotic organisms. Plant small RNAs are cleaved from longer fully or partially double-stranded RNA by Dicer. In most small RNA pathways, populations of overlapping small RNAs are produced. However, in some pathways double-stranded RNA molecules having unique start sites for cleavage are generated, and processive cleavage of these double-stranded RNAs generates a population of non-overlapping, phased small RNAs. Rice contains at least 40-fold more phased small RNA-generating loci than Arabidopsis, and mutations in genes involved in the biogenesis of phased small RNAs have much more severe phenotypes in rice and maize than in Arabidopsis. These considerations suggest that pathways producing phased small RNAs play a more important role in monocots than in Arabidopsis. To put this new development in context here we review the biogenesis and functions of phased small RNAs in rice.


Inflorescence development MicroRNA Phased small RNAs Rice Trans-acting si-RNA 


  1. Addo-Quaye C, Snyder JA, Park YB et al (2009) Sliced microRNA targets and precise loop-first processing of MIR319 hairpins revealed by analysis of the Physcomitrella patens degradome. RNA 15:2112–2121PubMedCrossRefGoogle Scholar
  2. Allen E, Howell MD (2010) miRNAs in the biogenesis of trans-acting siRNAs in higher plants. Semin Cell Dev Biol 21:798–804PubMedCrossRefGoogle Scholar
  3. Bailey TL, Williams N, Misleh C et al (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 34:W369–W373PubMedCrossRefGoogle Scholar
  4. Bologna NG, Mateos JL, Bresso EG et al (2009) A loop-to-base processing mechanism underlies the biogenesis of plant microRNAs miR319 and miR159. EMBO J 28:3646–3656PubMedCrossRefGoogle Scholar
  5. Chen HM, Chen LT, Patel K et al (2010) 22-Nucleotide RNAs trigger secondary siRNA biogenesis in plants. Proc Natl Acad Sci USA 107:15269–15274PubMedCrossRefGoogle Scholar
  6. Chitwood DH, Nogueira FT, Howell MD et al (2009) Pattern formation via small RNA mobility. Genes Dev 23:549–554PubMedCrossRefGoogle Scholar
  7. Cuperus JT, Carbonell A, Fahlgren N et al (2010a) Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis. Nat Struct Mol Biol 17:997–1003PubMedCrossRefGoogle Scholar
  8. Cuperus JT, Montgomery TA, Fahlgren N et al (2010b) Identification of MIR390a precursor ­processing-defective mutants in Arabidopsis by direct genome sequencing. Proc Natl Acad Sci USA 107:466–471PubMedCrossRefGoogle Scholar
  9. Douglas RN, Wiley D, Sarkar A et al (2010) Ragged seedling2 encodes an ARGONAUTE7-like protein required for mediolateral expansion, but not dorsiventrality, of maize leaves. Plant Cell 22:1441–1451PubMedCrossRefGoogle Scholar
  10. Eamens A, Wang MB, Smith NA et al (2008) RNA silencing in plants: yesterday, today, and tomorrow. Plant Physiol 147:456–468PubMedCrossRefGoogle Scholar
  11. Fahlgren N, Howell MD, Kasschau KD et al (2007) High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS ONE 2:e219PubMedCrossRefGoogle Scholar
  12. Girard A, Hannon GJ (2008) Conserved themes in small-RNA-mediated transposon control. Trends Cell Biol 18:136–148PubMedCrossRefGoogle Scholar
  13. Heisel SE, Zhang Y, Allen E et al (2008) Characterization of unique small RNA populations from rice grain. PLoS ONE 3:e2871PubMedCrossRefGoogle Scholar
  14. Howell MD, Fahlgren N, Chapman EJ et al (2007) Genome-wide analysis of the RNA-DEPENDENT RNA POLYMERASE6/DICER-LIKE4 pathway in Arabidopsis reveals dependency on miRNA- and tasiRNA-directed targeting. Plant Cell 19:926–942PubMedCrossRefGoogle Scholar
  15. Itoh JI, Kitano H, Matsuoka M et al (2000) Shoot organization genes regulate shoot apical meristem organization and the pattern of leaf primordium initiation in rice. Plant Cell 12:2161–2174PubMedGoogle Scholar
  16. Itoh J, Nonomura K, Ikeda K et al (2005) Rice plant development: from zygote to spikelet. Plant Cell Physiol 46:23–47Google Scholar
  17. Itoh J, Sato Y, Nagato Y (2008) The SHOOT ORGANIZATION2 gene coordinates leaf domain development along the central-marginal axis in rice. Plant Cell Physiol 49:1226–1236PubMedCrossRefGoogle Scholar
  18. Johnson C, Bowman L, Adai AT et al (2007) CSRDB: a small RNA integrated database and browser resource for cereals. Nucleic Acids Res 35:D829–D833PubMedCrossRefGoogle Scholar
  19. Johnson C, Kasprzewska A, Tennessen K et al (2009) Clusters and superclusters of phased small RNAs in the developing inflorescence of rice. Genome Res 19:1429–1440PubMedCrossRefGoogle Scholar
  20. Kircher M, Kelso J (2010) High-throughput DNA sequencing-concepts and limitations. Bioessays 32:524–536PubMedCrossRefGoogle Scholar
  21. Kurihara Y, Watanabe Y (2004) Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc Natl Acad Sci USA 101:12753–12758PubMedCrossRefGoogle Scholar
  22. Liu B, Chen Z, Song X et al (2007) Oryza sativa dicer-like4 reveals a key role for small interfering RNA silencing in plant development. Plant Cell 19:2705–2718PubMedCrossRefGoogle Scholar
  23. Mateos JL, Bologna NG, Chorostecki U et al (2010) Identification of microRNA processing determinants by random mutagenesis of Arabidopsis MIR172a precursor. Curr Biol 20:49–54PubMedCrossRefGoogle Scholar
  24. Mosher RA, Baulcombe DC (2008) Bacterial pathogens encode suppressors of RNA-mediated silencing. Genome Biol 17:237–241Google Scholar
  25. Nagasaki H, Itoh J, Hayashi K et al (2007) The small interfering RNA production pathway is required for shoot meristem initiation in rice. Proc Natl Acad Sci USA 104:14867–14871PubMedCrossRefGoogle Scholar
  26. Nobuta K, Venu RC, Lu C et al (2007) An expression atlas of rice mRNAs and small RNAs. Nat Biotechnol 25:473–477PubMedCrossRefGoogle Scholar
  27. Nogueira FT, Madi S, Chitwood DH et al (2007) Two small regulatory RNAs establish opposing fates of a developmental axis. Genes Dev 21:750–755PubMedCrossRefGoogle Scholar
  28. Peragine A, Yoshikawa M, Wu G et al (2004) SGS3 and SGS2/SDE1/RDR6 are required for ­juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes Dev 18:2368–2379PubMedCrossRefGoogle Scholar
  29. Poethig RS (2009) Small RNAs and developmental timing in plants. Curr Opin Genet Dev 19:374–378PubMedCrossRefGoogle Scholar
  30. Rajagopalan R, Vaucheret H, Trejo J et al (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20:3407–3425PubMedCrossRefGoogle Scholar
  31. Ramachandran V, Chen X (2008) Small RNA metabolism in Arabidopsis. Trends Plant Sci 13:368–374PubMedCrossRefGoogle Scholar
  32. Satoh N, Itoh J, Nagato Y (2003) The SHOOTLESS2 and SHOOTLESS1 genes are involved in both initiation and maintenance of the shoot apical meristem through regulating the number of indeterminate cells. Genetics 164:335–346PubMedGoogle Scholar
  33. Song L, Axtell MJ, Fedoroff NV (2010) RNA secondary structural determinants of miRNA precursor processing in Arabidopsis. Curr Biol 20:37–41PubMedCrossRefGoogle Scholar
  34. Sunkar R, Girke T, Jain PK et al (2005) Cloning and characterization of microRNAs from rice. Plant Cell 17:1397–1411PubMedCrossRefGoogle Scholar
  35. Toriba T, Suzaki T, Yamaguchi T et al (2010) Distinct regulation of adaxial-abaxial polarity in anther patterning in rice. Plant Cell 22:1452–1462PubMedCrossRefGoogle Scholar
  36. Vaucheret H (2005) MicroRNA-dependent trans-acting siRNA production. Sci STKE 2005:pe43PubMedCrossRefGoogle Scholar
  37. Vaucheret H, Mallory AC, Bartel DP (2006) AGO1 homeostasis entails coexpression of MIR168 and AGO1 and preferential stabilization of miR168 by AGO1. Mol Cell 22:129–136PubMedCrossRefGoogle Scholar
  38. Voinnet O (2008) Use, tolerance and avoidance of amplified RNA silencing by plants. Trends Plant Sci 13:317–328PubMedCrossRefGoogle Scholar
  39. Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136:669–687PubMedCrossRefGoogle Scholar
  40. Wang J, Gao X, Li L et al (2010) Overexpression of Osta-siR2141 caused abnormal polarity establishment and retarded growth in rice. J Exp Bot 61:1885–1895PubMedCrossRefGoogle Scholar
  41. Werner S, Wollmann H, Schneeberger K et al (2010) Structure determinants for accurate processing of miR172a in Arabidopsis thaliana. Curr Biol 20:42–48PubMedCrossRefGoogle Scholar
  42. Xie Z, Allen E, Wilken A et al (2005) DICER-LIKE 4 functions in trans-acting small interfering RNA biogenesis and vegetative phase change in Arabidopsis thaliana. Proc Natl Acad Sci USA 102:12984–12989PubMedCrossRefGoogle Scholar
  43. Yoshikawa M, Peragine A, Park MY et al (2005) A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Genes Dev 19:2164–2175PubMedCrossRefGoogle Scholar
  44. Zhang W, Gao S, Zhou X et al (2010) Multiple distinct small RNAs originate from the same microRNA precursors. Genome Biol 11:R81PubMedCrossRefGoogle Scholar
  45. Zhu QH, Spriggs A, Matthew L et al (2008) A diverse set of microRNAs and microRNA-like small RNAs in developing rice grains. Genome Res 18:1456–1465PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Lewis H. Bowman
    • 1
  • Cameron Johnson
    • 2
  • Gail Pruss
    • 1
  • Vicki Vance
    • 1
  1. 1.Department of Biological SciencesUniversity of South CarolinaColumbiaUSA
  2. 2.Section of Plant Biology, College of Biological SciencesUniversity of California DavisDavisUSA

Personalised recommendations