Advertisement

Learning Relation Extraction Grammars with Minimal Human Intervention: Strategy, Results, Insights and Plans

  • Hans Uszkoreit
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6609)

Abstract

The paper describes the operation and evolution of a linguistically oriented framework for the minimally supervised learning of relation extraction grammars from textual data. Cornerstones of the approach are the acquisition of extraction rules from parsing results, the utilization of closed-world semantic seeds and a filtering of rules and instances by confidence estimation. By a systematic walk through the major challenges for this approach the obtained results and insights are summarized. Open problems are addressed and strategies for solving these are outlined.

Keywords

relation extraction information extraction minimally supervised learning bootstrapping approaches to IE 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brin, S.: Extracting patterns and relations from the world wide web. In: Atzeni, P., Mendelzon, A.O., Mecca, G. (eds.) WebDB 1998. LNCS, vol. 1590, pp. 172–183. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  2. 2.
    Agichtein, E., Gravano, L.: Snowball: Extracting relations from large plain-text collections. In: Proceedings of the Fifth ACM International Conference on Digital Libraries (2000)Google Scholar
  3. 3.
    Yangarber, R.: Scenarion Customization for Information Extraction. Dissertation, Department of Computer Science, Graduate School of Arts and Science, New York University, New York, USA (2001)Google Scholar
  4. 4.
    Sudo, K., Sekine, S., Grishman, R.: An improved extraction pattern representation model for automatic IE pattern acquisition. In: Proceedings of the 41st Annual Meeting of the Association for Computational Linguistics, pp. 224–231 (2003)Google Scholar
  5. 5.
    Xu, F., Uszkoreit, H., Li, H.: A seed-driven bottom-up machine learning framework for extracting relations of various complexity. In: Proceedings of ACL 2007, 45th Annual Meeting of the Association for Computational Linguistics, Prague, Czech Republic (2007)Google Scholar
  6. 6.
    Muslea, I.: Extraction patterns for information extraction tasks: A survey. In: AAAI Workshop on Machine Learning for Information Extraction, Orlando, Florida (1999)Google Scholar
  7. 7.
    Drozdzynski, W., Krieger, H.-U., Piskorski, J., Schäfer, U., Xu, F.: Shallow processing with unification and typed feature structures — foundations and applications. Künstliche Intelligenz 1, 17–23 (2004)Google Scholar
  8. 8.
    Lin, D.: Dependency-based evaluation of MINIPAR. In: Abeillé, A. (ed.) Treebanks - Building and Using Parsed Corpora. Kluwer Academic Publishers, Dordrecht (2003)Google Scholar
  9. 9.
    de Marneffe, M., Manning, C.D.: The stanford typed dependencies representation. In: Coling 2008: Proceedings of the Workshop on Cross-Framework and Cross-Domain Parser Evaluation, Manchester, UK (2008)Google Scholar
  10. 10.
    Callmeier, U.: PET – a platform for experi- mentation with efficient HPSG processing techniques. Natural Language Engineering 6(1), 99–107 (2000)CrossRefGoogle Scholar
  11. 11.
    Flickinger, D.: On building a more efficient grammar by exploiting types. Natural Language Engineering 6(1), 15–28 (2000)CrossRefGoogle Scholar
  12. 12.
    Yangarber, R.: Counter-training in discovery of semantic patterns. In: Proceedings of the 41st Annual Meeting of the Association for Computational Linguistics, Sapporo, Japan (2003)Google Scholar
  13. 13.
    Etzioni, O., Cafarella, M., Downey, D., Popescu, A., Shaked, T., Soderland, S., Weld, D., Yates, A.: Unsupervised named-entity extraction from the web: An experimental study. Artificial Intelligence 165(1), 91–134 (2005)CrossRefGoogle Scholar
  14. 14.
    Bunescu, R.C., Mooney, R.J.: Learning to extract relations from the web using minimal supervision. In: Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics (2007)Google Scholar
  15. 15.
    Uszkoreit, H., Xu, F., Li, H.: Analysis and Improvement of Minimally Supervised Machine Learning for Relation Extraction. In: Horacek, H., Métais, E., Muñoz, R., Wolska, M. (eds.) NLDB 2009. LNCS, vol. 5723, pp. 8–23. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Xu, F., Uszkoreit, H., Krause, S., Li, H.: Boosting Relation Extraction with Limited Closed-World Knowledge. In: Poster Volume of the Proceedings of the 23rd International Conference on Computational Linguistics, Beijing, China (2010)Google Scholar
  17. 17.
    Xu, F., Uszkoreit, H., Li, H., Felger, N.: Adaptation of relation extraction rules to new domains. In: Proceedings of the Poster Session of the Sixth International Conference on Language Resources and Evaluation, LREC 2008, Marrekech, Morocco (2008)Google Scholar
  18. 18.
    Li, H., Xu, F., Uszkoreit, H.: Minimally Supervised Learning of Relation Extraction Rules from Various Domains. DFKI research report (2010)Google Scholar
  19. 19.
    Xu, F., Li, H., Zhang, Y., Krause, S., Uszkoreit, H.: Minimally Supervised Domain Adapative Parse Reranking (2011) (forthcoming) Google Scholar
  20. 20.
    Sudo, K., Sekine, S., Grishman, R.: An improved extraction pattern representation model for automatic IE pattern acquisition. In: Proceedings of the 41st Annual Meeting of the Association for Computational Linguistics, pp. 224–231 (2003)Google Scholar
  21. 21.
    Greenwood, M.A., Stevenson, M.: Improving semi-supervised acquisition of relation extraction patterns. In: Proceedings of the Workshop on Information Extraction Beyond The Document, pp. 29–35. Association for Computational Linguistics, Sydney (2006)CrossRefGoogle Scholar
  22. 22.
    Xu, F., Uszkoreit, H., Li, H.: Task driven coreference resolution for relation extraction. In: Proceedings of the European Conference for Artificial Inteligence ECAI 2008, Patras, Greece (2008)Google Scholar
  23. 23.
    Xu, F.: Bootstrapping Relation Extraction with Semantic Seeds. PhD thesis, Saarland University, Saarbrücken, Germany (2007)Google Scholar
  24. 24.
    Adolphs, P., Li, H., Uszkoreit, H., Xu, F.: Deep Linguistic Knowledge for Relation Extraction (2011) (forthcoming)Google Scholar
  25. 25.
    Kozareva, Z., Hovy, E.: Learning arguments and supertypes of semantic relations using recursive patterns. In: Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, Uppsala, Sweden, pp. 1482–1491 (July 2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Hans Uszkoreit
    • 1
  1. 1.German Research Center for Artificial Intelligence (DFKI)Saarland UniversitySaarbrückenGermany

Personalised recommendations