Lasers and Coherent Light Sources

Abstract

This chapter describes lasers and other sources of coherent light that operate in a wide wavelength range. First, the general principles for the generation of coherent continuous-wave and pulsed radiation are treated including the interaction of radiation with matter, the properties of optical resonators and their modes as well as such processes as Q-switching and mode-locking. The general introduction is followed by sections on numerous types of lasers, the emphasis being on todayʼs most important sources of coherent light, in particular on solid-state lasers and several types of gas lasers. An important part of the chapter is devoted to the generation of coherent radiation by nonlinear processes with optical parametric oscillators, difference- and sum-frequency generation, and high-order harmonics. Radiation in the extended ultraviolet (EUV) and x-ray ranges can be generated by free electron lasers (FEL) and advanced x-ray sources. Ultrahigh light intensities up to 1021 W/cm2 open the door to studies of relativistic laser–matter interaction and laser particle acceleration. The chapter closes with a section on laser stabilization.

Abbreviations

1-D

one-dimensional

2-D

two-dimensional

ADC

analog-to-digital converter

ADC

asymmetric directional coupler

AFM

atomic force microscope

AM

air mass

AM

amplitude modulation

ANL

Argonne National Laboratory

AOM

acoustooptic modulator

AR

antireflection

ASE

amplified spontaneous emission

AVLIS

atomic vapor laser isotope separation

AWG

arrayed waveguide

BBO

β-barium-borate

BH

buried heterostructure

BPM

beam propagation method

BPM

birefringence phase matching

BYF

BaY2F8

CB

conduction band

CCD

charge-coupled device

CCRF

capacitively coupled RF

CD

compact disc

CIPM

Comité International des Poids et Mésures

CPA

chirped-pulse amplification

CPM

colliding-pulse mode-locked

CPM

corrugation pitch modulation

CT

computed tomography

CW-OPO

continuous-wave optical parametric oscillator

CW

continuous wave

DBR

distributed Bragg reflector

DCM

4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran

DESY

Deutsches Elektronen-Synchrotron

DFB

distributed feedback

DFG

difference-frequency generation

DLA

direct laser acceleration

DOE

diffractive optical element

DRAM

dynamic random-access memory

DRO

doubly resonant OPO configuration

DUV

deep ultraviolet

DVD

digital versatile disc

ECDL

extended-cavity diode laser

EEDF

electron energy distribution function

ELA

excimer laser annealing

EM

electromagnetic

EMC

electromagnetic compatibility

EOM

electrooptic modulator

ESA

excited-state absorption

EUV

extreme ultraviolet

FEL

free-electron laser

FF

far field

FLASH

free-electron-laser Hamburg

FM

frequency modulation

FOM

figure of merit

FP

Fabry–Pérot

FR

Faraday rotator

FROG

frequency-resolved optical gating

FT

Fourier transform

FWHM

full width at half-maximum

GAC

grating assisted coupler

GC

gain-coupled

GLS

sulfide glasses GaLaS

GRIIRA

green induced infrared absorption

GSA

ground-state absorption

GTO

gate-turn-off

HFS

hyperfine structure

HHG

high-order-harmonic generation

HMASPS

trans-4-[p-(N-hydroxyethyl-N-methylamino) styryl]-N-methylpyridinium p-toluene sulfonate

HR

highly reflecting

HTMC

high-temperature multipass cell

ICL

interband cascade laser

ICP

inductively coupled plasma

IGBT

insulator gate bipolar transistor

IR

infrared

ISM

Industrial Scientific and Medical

ITRS

International Technology Roadmap for Semiconductors

KDP

potassium dihydrogen phosphate

KLM

Kerr-lens mode-locking

KTA

KTiOAsO4

KTP

KTiOPO4

LBO

LiB3O5

LCD

liquid-crystal display

LCLS

Linac Coherent Light Source

LD

laser diode

LED

light-emitting diode

LIDAR

light detecting and ranging

LMJ

laser megajoule

LSHB

longitudinal spatial hole burning

LWFA

laser wakefield acceleration

LiF

lithium fluoride

MBE

molecular beam epitaxy

MCVD

modified chemical vapor deposition

MEMS

microelectromechanical system

MIR

mid-infrared

ML

mode locking

MMA

methyl methacrylate

MOCVD

metalorganic chemical vapour epitaxy

MOPA

master-oscillator power-amplifier

MOSFET

metal?oxide?semiconductor field-effect transistor

MOT

magnetooptical trap

MPMMA

modified poly(methyl methacrylate)

NA

numerical aperture

NCPM

noncritical phase matching

NF

near field

NGL

next-generation lithography

NIF

National Ignition Facility

NIR

near infrared

NPM

not phase-matched

OFHC

oxygen-free high conductivity

OFI

optical-field ionization

OLED

organic light-emitting device

OP

oriented-patterned

OPA

optical parametric amplifier

OPCPA

optical parametric chirped pulse amplification

OPG

optical parametric generation

OPO

optical parametric oscillator

OPS

optically pumped semiconductor laser

ORMOSIL

organically modified silicates

PA

photon avalanche

PBS

photonic band structure

PBS

polarizing beam splitter

PCB

printed circuit board

PD

photodetector

PDH

Pound-Drever-Hall technique

PESRO

pump-enhanced SRO

PIC

particle-in-cell

PM

polarization-maintaining

PMMA

polymethylmethacrylate

PPKTA

periodically poled KTiOAsO4

PPKTP

periodically poled potassium titanyl phosphate

PPLN

periodically poled lithium niobate

PPLT

periodically poled lithium tantalate

PPRTA

periodically poled RbTiOAsO4

PWM

pulse width modulator

PZT

piezoelectric transducer

QCL

quantum cascade laser

QD

quantum dot

QED

quantum electrodynamics

QPM

quasi-phase matching

QW

quantum well

RAM

residual amplitude modulation

RDE

rotating disc electrode

RE

rare-earth

RF

radio frequency

RIE

reactive-ion etching

RS

Raman scattering

RT

radiation transport

RT

room-temperature

RTA

RbTiOAsO4

SASE

self-amplified spontaneous emission

SCP

stretcher–compressor pair

SCSS

spring–8 compact SASE source

SEM

scanning electron microscope

SFG

sum-frequency generation

SG

sampled grating

SHG

second-harmonic generation

SI

Système International

SM-LWFA

self-modulated laser wakefield acceleration

SM

small molecule

SMSR

side-mode suppression ratio

SNR

signal-to-noise ratio

SP

Smith–Purcell

SRO

singly resonant OPO

SSDL

solid-state dye laser

SSG

superstructure grating

STPA

sequential two-photon absorption

TCE

transient collisional excitation

TDSE

time-dependent Schrödinger equation

TE

transverse electric

TEA

transverse excited atmospheric

TEM

transverse electric magnetic

TFT

thin-film transistor

THG

third-harmonic generation

TM

transition metal

TM

transversal magnetic

TM

transverse magnetic

TNSA

target normal sheath acceleration

TRO

triply resonant OPO

TTF

TESLA test facility

TTG

tunable twin guide

UV

ultraviolet

VB

valence band

VBG

volume holographic grating

VC

vertical cavity

VCSEL

vertical-cavity surface-emitting laser

VPE

vapor-phase epitaxy

VUV

vacuum ultraviolet

XFEL

x-ray FEL

XUV

extreme ultraviolet (soft x-ray)

YAG

yttrium aluminium garnet

YAP

yttrium aluminium perovskite

YLF

yttrium lithium fluoride

YVO

yttrium vanadate

ZBLAN

ZrF4BaF2LaF3AlF3NaF

si

semiinsulating

References

  1. 11.1.
    T.H. Maiman: Stimulated optical radiation in ruby, Nature 187, 493 (1960)ADSCrossRefGoogle Scholar
  2. 11.2.
    A.L. Schawlow, C.H. Towens: Infrared and optical masers, Phys. Rev. 112, 1940 (1958)ADSCrossRefGoogle Scholar
  3. 11.3.
    O. Svelto: Principles of Lasers, 4th edn. (Springer, Berlin, Heidelberg 1998)Google Scholar
  4. 11.4.
    W. Koechner: Solid-State Laser Engineering, 4th edn. (Springer, Berlin, Heidelberg 1996)Google Scholar
  5. 11.5.
    A.E. Siegman: Lasers (Univ. Sci. Books, Mill Valley 1986)Google Scholar
  6. 11.6.
    R. Pantell, H. Puthoff: Fundamentals of Quantum Electronics (Wiley, New York 1964)Google Scholar
  7. 11.7.
    W. Demtröder: Laser Spectroscopy, 2nd edn. (Springer, Berlin, Heidelberg 1996)Google Scholar
  8. 11.8.
    M. Sargent, M.O. Scully, W.E. Lamb: Laser Physics (Addison-Wesley, London 1974)Google Scholar
  9. 11.9.
    A. Yariv: Quantum Electronics, 3rd edn. (Wiley, New York 1989)Google Scholar
  10. 11.10.
    V. Weisskopf, E. Wigner: Berechnung der natürlichen Linienbreite auf Grund der Diracschen Lichttheorie, Z. Phys. 63, 54 (1930), in GermanADSGoogle Scholar
  11. 11.11.
    A. Einstein: On the quantum theory of radiation, Z. Phys. 18, 121 (1917)Google Scholar
  12. 11.12.
    H. Kogelnick, T. Li: Laser beams and resonators, Appl. Opt. 5, 1550 (1966)ADSCrossRefGoogle Scholar
  13. 11.13.
    A.G. Fox, T. Li: Resonant modes in a maser interferometer, Bell Syst. Tech. J. 40, 453–458 (1961)Google Scholar
  14. 11.14.
    D.J. Kuizenga, A.E. Siegman: FM and AM mode locking of the homogeneous laser Part I: Theory, IEEE J. Quantum Electron. 6, 694 (1970)ADSCrossRefGoogle Scholar
  15. 11.15.
    A.H. Haus: Theory of mode locking with a fast saturable absorber, J. Appl. Phys. 46, 3049 (1975)ADSCrossRefGoogle Scholar
  16. 11.16.
    T.H. Maiman: Stimulated optical radiation in ruby, Nature 187, 493 (1960)ADSCrossRefGoogle Scholar
  17. 11.17.
    J.E. Geusic, H.M. Marcos, L.G. Van Uitert: Laser oscillations in Nd-doped yttrium aluminum, yttrium gallium and gadolinium garnets, Appl. Phys. Lett. 4, 182 (1964)ADSCrossRefGoogle Scholar
  18. 11.18.
    E. Snitzer: Optical maser action of Nd+3 in a barium crown glass, Phys. Rev. Lett. 7, 444 (1961)ADSCrossRefGoogle Scholar
  19. 11.19.
    T.Y. Fan, R.L. Byer: Diode-laser pumped solid-state lasers, IEEE J. Quantum Electron. 24, 895 (1988)ADSCrossRefGoogle Scholar
  20. 11.20.
    T.Y. Fan, G. Huber, R.L. Byer, P. Mitzscherlich: Spectroscopy and diode laser-pumped operation of Tm;Ho:YAG, IEEE J. Quantum Electron. 24, 924 (1988)ADSCrossRefGoogle Scholar
  21. 11.21.
    L. Esterowitz: Diode-pumped holmium, thulium, and erbium lasers between 2 and 3 μ m operating CW at room temperature, Opt. Eng. 29, 676 (1990)ADSCrossRefGoogle Scholar
  22. 11.22.
    P. Lacovara, H.K. Choi, C.A. Wang, R.L. Aggarwal, T.Y. Fan: Room-temperature diode-pumped Yb:YAG laser, Opt. Commun. 105, 1089 (1991)Google Scholar
  23. 11.23.
    S.A. Payne, W.F. Krupke, L.K. Smith, L.D. DeLoach, W.L. Kway: Laser properties of Yb in fluoro-apatite and comparison with other Yb-doped gain media, Conf. Lasers Electroopt., Vol. 12 (1992) p. 540Google Scholar
  24. 11.24.
    J.C. Walling, O.G. Peterson, H.P. Jenssen, R.C. Morris, E.W. OʼDell: Tunable alexandrite lasers, IEEE J. Quantum Electron. 16, 1302 (1980)ADSCrossRefGoogle Scholar
  25. 11.25.
    B. Struve, G. Huber, V.V. Laptev, I.A. Shcherbakov, E.V. Zharikov: Tunable room-temperature CW-laser action in Cr3+:GdScGa-garnet, Appl. Phys. B 30, 117 (1983)ADSCrossRefGoogle Scholar
  26. 11.26.
    S.A. Payne, L.L. Chase, L.K. Smith, W.L. Kway, H.W. Newkirk: Laser performance of LiSrAlF_6:Cr3+, J. Appl. Phys. 66, 1051 (1989)ADSCrossRefGoogle Scholar
  27. 11.27.
    R. Scheps: Cr-doped solid-state lasers pumped by visible laser diodes, Opt. Mater. 1, 1 (1992)ADSCrossRefGoogle Scholar
  28. 11.28.
    P. Moulton: Ti-doped sapphire: A tunable solid-state laser, Opt. News 8, 9 (1982)CrossRefGoogle Scholar
  29. 11.29.
    P. Albers, E. Stark, G. Huber: Continuous-wave laser operation and quantum efficiency of titanium-doped sapphire, J. Opt. Soc. Am. B 3, 134 (1986)ADSCrossRefGoogle Scholar
  30. 11.30.
    V. Petričević, S.K. Gayen, R.R. Alfano: Laser action in chromium-activated forsterite for near-infrared excitation: Is Cr4+ the lasing ion?, Appl. Phys. Lett. 53, 2590 (1988)ADSCrossRefGoogle Scholar
  31. 11.31.
    G.M. Zverev, A.V. Shestakov: Tunable near-infrared oxide crystal lasers, OSA Proceedings 5, 66 (1989)Google Scholar
  32. 11.32.
    W. Jia, B.M. Tissue, K.R. Hoffmann, L. Lu, W.M. Yen: Near-infrared luminescence in Cr,Ca-doped yttrium aluminium garnet, OSA Proc. Adv. Solid-State Lasers, Vol. 10 (1991) p. 87Google Scholar
  33. 11.33.
    S. Kück, K. Petermann, G. Huber: Spectroscopic investigation of the Cr4+-center in YAG, OSA Proc. Adv. Solid-State Lasers, Vol. 10 (1991) p. 92Google Scholar
  34. 11.34.
    R.H. Page, L.D. DeLoach, G.D. Wilke, S.A. Payne, W.F. Krupke: A new class of tunable mid-IR lasers based on Cr2+-doped II-VI compounds, CLEOʼ95 (Opt. Soc. Am., Washington 1995), CWH5Google Scholar
  35. 11.35.
    A. Richter, E. Heumann, E. Osiac, G. Huber, W. Seelert, A. Diening: Diode pumping of a continuous-wave Pr3+-doped LiYF_4 laser, Opt. Lett. 29, 2638–2640 (2004)ADSCrossRefGoogle Scholar
  36. 11.36.
    B. Henderson, G.F. Imbusch: Optical Spectroscopy of Inorganic Solids (Clarendon, Oxford 1989)Google Scholar
  37. 11.37.
    G.H. Dieke: Spectra and Energy Levels of Rare Earth Ions in Crystals, 1st edn. (Wiley, New York 1968)Google Scholar
  38. 11.38.
    Y. Tanabe, S. Sugano: On the absorption spectra of complex ions, J. Phys. Soc. Jpn. 9, 766 (1954)ADSCrossRefGoogle Scholar
  39. 11.39.
    H.C. Schläfer, G. Gliemann: Einführung in die Ligandenfeldtheorie (Akademische Verlagsges., Wiesbaden 1980), in GermanGoogle Scholar
  40. 11.40.
    P. Schuster: Ligandenfeldtheorie (Verl. Chemie, Weinheim 1973), in GermanGoogle Scholar
  41. 11.41.
    C.J. Ballhausen: Introduction to Ligand Field Theory (McGraw-Hill, New York 1962)MATHGoogle Scholar
  42. 11.42.
    J.S. Griffith: Theory of Transition Metal Ions (Cambridge Univ. Press, Cambridge 1961)MATHGoogle Scholar
  43. 11.43.
    A.B.P. Lever: Inorganic Electronic Spectroscopy (Elsevier, Amsterdam 1984)Google Scholar
  44. 11.44.
    S.A. Payne, L.L. Chase, G.F. Wilke: Excited-state absorption spectra of V2+ in KMgF_3 and MgF_2, Phys. Rev. B 37, 998 (1988)ADSCrossRefGoogle Scholar
  45. 11.45.
    D.E. McCumber: Theory of phonon-terminated optical masers, Phys. Rev. 134, 299 (1964)ADSCrossRefGoogle Scholar
  46. 11.46.
    D.E. McCumber: Einstein relations connecting broadband emission and absorption spectra, Phys. Rev. 136, 954 (1964)ADSCrossRefGoogle Scholar
  47. 11.47.
    N.F. Mott: On the absorption of light by crystals, Proc. Soc. A 167, 384 (1938)ADSCrossRefGoogle Scholar
  48. 11.48.
    C.W. Struck, W.H. Fonger: Unified model of the temperature quenching of narrow-line and broad-band emissions, J. Lumin. 10, 1 (1975)CrossRefGoogle Scholar
  49. 11.49.
    O. Svelto: Principles of Lasers (Plenum, New York 1989)Google Scholar
  50. 11.50.
    W. Koechner: Solid-State Laser Engineering (Springer, Berlin, Heidelberg 1996)Google Scholar
  51. 11.51.
    A. Yariv: Quantum Electronics (Wiley, New York 1967)Google Scholar
  52. 11.52.
    A.E. Siegman: Lasers (Univ. Sci. Books, Mill Valley 1986)Google Scholar
  53. 11.53.
    D. Findlay, R.A. Clay: The measurement of internal losses in 4-level lasers, Phys. Lett. 20, 277 (1966)ADSCrossRefGoogle Scholar
  54. 11.54.
    J.A. Caird, S.A. Payne, P.R. Staver, A.J. Ramponi, L.L. Chase, W.F. Krupke: Quantum electronic properties of the Na_3Ga_2Li_3F_12:Cr3+ laser, J. Quantum Electron. 24, 1077 (1988)ADSCrossRefGoogle Scholar
  55. 11.55.
    C.D. Marshall, J.A. Speth, S.A. Payne, W.F. Krupke, G.J. Quarles, V. Castillo, B.H.T. Chai: Ultraviolet laser emission properties of Ce3+-doped LiSrAlF_6 and LiCaAlF_6, J. Opt. Soc. Am. B 11, 2054 (1994)ADSCrossRefGoogle Scholar
  56. 11.56.
    D.W. Coutts, A.J.S. McGonigle: Cerium-doped fluoride lasers, IEEE J. Quantum Elect. 40, 1430 (2004)ADSCrossRefGoogle Scholar
  57. 11.57.
    P. Dorenbos: The 5d level positions of the trivalent lanthanides in inorganic compounds, J. Lumin. 91, 155 (2000)CrossRefGoogle Scholar
  58. 11.58.
    D.J. Ehrlich, P.F. Moulton, R.M. Osgood: Ultraviolet solid-state Ce:YLF laser at 325 nm, Opt. Lett. 4, 184 (1979)ADSCrossRefGoogle Scholar
  59. 11.59.
    M.A. Dubinskii, V.V. Semashko, A.K. Naumov, R.Y. Abdulsabirov, S.L. Korableva: A new active medium for a tunable solid-state UV laser with an excimer pump, Laser Phys. 4, 480 (1994)Google Scholar
  60. 11.60.
    M.A. Dubinskii, V.V. Semashko, A.K. Naumov, R.Y. Abdulsabirov, S.L. Korableva: Ce3+-doped colquiriite. A new concept for a all-solid-state tunable ultraviolet laser, J. Mod. Opt. 40, 1 (1993)ADSCrossRefGoogle Scholar
  61. 11.61.
    J.F. Pinto, G.H. Rosenblatt, L. Esterowitz, V. Castillo, G.J. Quarles: Tunable solid-state laser action in Ce3+:LiSrAlF_6, Electron. Lett. 30, 240 (1994)CrossRefGoogle Scholar
  62. 11.62.
    D.J. Ehrlich, P.F. Moulton, R.M. Osgood: Optically pumped Ce:LaF_3 laser at 286 nm, Opt. Lett. 5, 339 (1980)ADSCrossRefGoogle Scholar
  63. 11.63.
    A.A. Kaminskii, S.A. Kochubei, K.N. Naumochkin, E.V. Pestryakov, V.I. Trunov, T.V. Uvarova: Amplification of the ultraviolet radiation due to the 5d-4f configurational transition of the Ce3+ ion in BaY_2F_8, Sov. J. Quantum Electron. 19, 340 (1989)ADSCrossRefGoogle Scholar
  64. 11.64.
    J.F. Owen, P.B. Dorain, T. Kobayasi: Excited-state absorption in Eu2+:CaF_2 and Ce3+:YAG single crystals at 298 and 77 K, J. Appl. Phys. 52, 1216 (1981)ADSCrossRefGoogle Scholar
  65. 11.65.
    D.S. Hamilton, S.K. Gayen, G.J. Pogatshnik, R.D. Ghen, W.J. Miniscalco: Optical-absorption and photoionization measurements from the excited states of Ce3+:Y_3Al_5O_12, Phys. Rev. B 39, 8807 (1989)ADSCrossRefGoogle Scholar
  66. 11.66.
    A.J. Bayramian, C.D. Marshall, J.H. Wu, J.A. Speth, S.A. Payne, G.J. Quarles, V.K. Castillo: Ce:LiSrAlF_6 laser performance with antisolarant pump beam, J. Lumin. 69, 85 (1996)CrossRefGoogle Scholar
  67. 11.67.
    A.J. Bayramian, C.D. Marshall, J.H. Wu, J.A. Speth, S.A. Payne, G.J. Quarles, V.K. Castillo: Ce:LiSrAlF_6 laser performance with antisolarant pump beam, OSA Trends Opt. Photonics Adv. Solid-State Lasers, Vol. 1, ed. by S.A. Payne, C.R. Pollock (Opt. Soc. Am., Washington 1996) pp. 60–65Google Scholar
  68. 11.68.
    E.G. Gumanskaya, M.V. Korzhik, S.A. Smirnova, V.B. Pawlenko, A.A. Fedorov: Spectroscopic characteristics and scintillation efficiency of YAlO_3 single crystals activated by cerium, Opt. Spectrosc. 72, 86 (1992)ADSGoogle Scholar
  69. 11.69.
    J. Ganem, W.M. Dennis, W.M. Yen: One-color sequential pumping of the 4f5d bands in Pr-doped yttrium aluminum garnet, J. Lumin. 54, 79 (1992)CrossRefGoogle Scholar
  70. 11.70.
    S. Nicolas, M. Laroche, S. Girard, R. Moncorgé, Y. Guyot, M.F. Joubert, E. Descroix, A.G. Petrosyan: 4f2 to 4f5d excited state absorption in Pr3+:YAlO_3, J. Phys. Condens. Matter 11, 7937 (1999)ADSCrossRefGoogle Scholar
  71. 11.71.
    I. Sokólska, S. Kück: Investigation of high-energetic transitions in some Pr3+-doped fluoride and oxide crystals, Proc. SPIE 4412, 236–241 (2000)CrossRefGoogle Scholar
  72. 11.72.
    M. Laroche, A. Braud, S. Girard, J.L. Doualan, R. Moncorgé, M. Thuau, L.D. Merkle: Spectroscopic investigations of the 4f5d energy levels of Pr3+ in fluoride crystals by excited-state absorption and two-step excitation measurements, J. Opt. Soc. Am. B 16, 2269 (1999)ADSCrossRefGoogle Scholar
  73. 11.73.
    J.K. Lawson, S.A. Payne: Excited-state absorption of Pr3+-doped fluoride crystals, Opt. Mater. 2, 225 (1993)ADSCrossRefGoogle Scholar
  74. 11.74.
    Y.M. Cheung, S.K. Gayen: Excited-state absorption in Pr3+:Y_3Al_5O_12, Phys. Rev. B 49, 14827 (1994)ADSCrossRefGoogle Scholar
  75. 11.75.
    T. Kozeki, H. Ohtake, N. Sarukura, Z. Liu, K. Shimamura, K. Nakano, T. Fukuda: Novel design of high-pulse-energy ultraviolet Ce:LiCAF laser oscillator. In: OSA Trends Opt. Photonics, Vol. 34, ed. by H. Injeyan, U. Keller, C. Marshall (Opt. Soc. Am., Washington 2000) pp. 400–403Google Scholar
  76. 11.76.
    P. Rambaldi, R. Moncorgé, J.P. Wolf, C. Pédrini, J.Y. Gesland: Efficient and stable pulsed laser operation of Ce:LiLuF_4 around 308 nm, Opt. Commun. 146, 163 (1998)ADSCrossRefGoogle Scholar
  77. 11.77.
    P. Rambaldi, R. Moncorgé, S. Girard, J.P. Wolf, C. Pédrini, J.Y. Gesland: Efficient UV laser operation of Ce:LiLuF_4 single crystal. In: OSA Trends Opt. Photonics, Vol. 19, ed. by W.R. Bosenberg, M.M. Fejer (Opt. Soc. Am., Washington 1998) pp. 10–12Google Scholar
  78. 11.78.
    Z. Liu, H. Ohtake, N. Sarukura, M.A. Dubinskii, R.Y. Abdulsabirov, S.L. Korableva: All-solid-state tunable ultraviolet picosecond Ce3+:LiLuF_4 laser with direct pumping by the fifth harmonic of a Nd:YAG laser. In: OSA Trends Opt. Photonics, Vol. 19, ed. by W.R. Bosenberg, M.M. Fejer (Opt. Soc. Am., Washington 1998) pp. 13–15Google Scholar
  79. 11.79.
    A.J.S. McGonigle, D.W. Coutts, C.E. Webb: Multi kHz PRF cerium lasers pumped by frequency doubled copper vapour lasers. In: OSA Trends Opt. Photonics, Vol. 26, ed. by M.J. Fejer, H. Injeyan, U. Keller (Opt. Soc. Am., Washington 1999) pp. 123–129Google Scholar
  80. 11.80.
    K.S. Johnson, H.M. Pask, M.J. Withford, D.W. Coutts: Efficient all-solid-state Ce:LiLuF laser source at 309 nm, Opt. Commun. 252, 132–137 (2005)ADSCrossRefGoogle Scholar
  81. 11.81.
    Z. Liu, K. Shimamura, K. Nakano, N. Mujilatu, T. Fukuda, T. Kozeki, H. Ohtake, N. Sarukura: Direct generation of 27 mJ, 309 nm pulses from a Ce:LLF oscillator using a large-size Ce:LLF crystal. In: OSA Trends Opt. Photonics, Vol. 34, ed. by H. Injeyan, U. Keller, C. Marshall (Opt. Soc. Am., Washington 2000) pp. 396–399Google Scholar
  82. 11.82.
    Z. Liu, S. Izumida, S. Ono, H. Ohtake, N. Sarukura, K. Shimamura, N. Mujilato, S.L. Baldochi, T. Fukuda: Direct generation of 30 mJ, 289 nm pulses from a Ce:LiCAF oscillator using Czochralski-grown large crystal. In: OSA Trends Opt. Photonics, Vol. 26, ed. by M.J. Fejer, H. Injeyan, U. Keller (Opt. Soc. Am., Washington 1999) pp. 115–117Google Scholar
  83. 11.83.
    S.V. Govorkov, A.O. Wiessner, T. Schröder, U. Stamm, W. Zschocke, D. Basting: Efficient high average power and narrow spectral linewidth operation of Ce:LICAF laser at 1 kHz repetition rate. In: OSA Trends Opt. Photonics, Vol. 19, ed. by W.R. Bosenberg, M.M. Fejer (Opt. Soc. Am., Washington 1998) pp. 2–5Google Scholar
  84. 11.84.
    D.J. Spence, H. Liu, D.W. Coutts: Low-threshold miniature Ce:LiCAF lasers, Opt. Commun. 262, 238–240 (2006)ADSCrossRefGoogle Scholar
  85. 11.85.
    D. Alderighi, G. Toci, M. Vannini, D. Parisi, S. Bigotta, M. Tonelli: High efficiency UV solid state lasers based on Ce:LiCaAlF_6 crystals, Appl. Phys. B 83, 51–54 (2006)ADSCrossRefGoogle Scholar
  86. 11.86.
    J.F. Pinto, L. Esterowitz, G.J. Quarles: High performance Ce3+:LiSrAlF_6/LiCaAlF_6 UV lasers with extended tunability, Electron. Lett. 31, 2009 (1995)CrossRefGoogle Scholar
  87. 11.87.
    R.W. Waynant, P.H. Klein: Vacuum ultraviolet laser emission from Nd+3:LaF_3, Appl. Phys. Lett. 46, 14 (1985)ADSCrossRefGoogle Scholar
  88. 11.88.
    R.W. Waynant: Vacuum ultraviolet laser emission from Nd3+:LaF_3, Appl. Phys. B 28, 205 (1982)Google Scholar
  89. 11.89.
    M.A. Dubinskii, A.C. Cefalas, C.A. Nicolaides: Solid state LaF_3:Nd3+ VUV laser pumped by a pulsed discharge F_2-molecular laser at 157 nm, Opt. Commun. 88, 122 (1992)ADSCrossRefGoogle Scholar
  90. 11.90.
    M.A. Dubinskii, A.C. Cefalas, E. Sarantopoulou, S.M. Spyrou, C.A. Nicolaides, R.Y. Abdulsabirov, S.L. Korableva, V.V. Semashko: Efficient LaF_3:Nd3+-based vacuum-ultraviolet laser at 172 nm, J. Opt. Soc. Am. B 9, 1148 (1992)ADSCrossRefGoogle Scholar
  91. 11.91.
    P.P. Sorokin, M.J. Stevenson: Solid-state optical maser using divalent samarium in calcium fluorid, IBM J. Res. Dev. 5, 56 (1961)CrossRefGoogle Scholar
  92. 11.92.
    Y.S. Vagin, V.M. Marchenko, A.M. Prokhorov: Spectrum of a laser based on electron-vibrational transitions in a CaF_2:Sm2+ crystal, Sov. Phys. JETP 28, 904 (1969)ADSGoogle Scholar
  93. 11.93.
    I. Sokólska, S. Kück: Observation of photon cascade emission in Pr3+-doped KMgF_3, Chem. Phys. 270, 355 (2001)CrossRefGoogle Scholar
  94. 11.94.
    R.T. Wegh, H. Donker, A. Meijerink, R.J. Lamminmäki, J. Hölsä: Vacuum-ultraviolet spectroscopy and quantum cutting for Gd3+ in LiYF_4, Phys. Rev. B 56, 13841 (1997)ADSCrossRefGoogle Scholar
  95. 11.95.
    J.K. Lawson, S.A. Payne: Excited-state absorption spectra and gain measurements of CaF_2:Sm2+, J. Opt. Soc. Am. B 8, 1404 (1991)ADSCrossRefGoogle Scholar
  96. 11.96.
    S.A. Payne, C.D. Marshall, A.J. Bayramian, J.K. Lawson: Conduction band states and the 5d-4f laser transition of rare earth ion dopants, Proc. SPIE 3176, 68 (1997)ADSCrossRefGoogle Scholar
  97. 11.97.
    Z.J. Kiss, R.C. Duncan Jr.: Optical maser action in CaF_2, Proceedings IRE 50, 1532 (1962)Google Scholar
  98. 11.98.
    R.C. Duncan Jr., Z.J. Kiss: Continously operating CaF_2:Tm2+ optical maser, Appl. Phys. Lett. 3, 23 (1963)ADSCrossRefGoogle Scholar
  99. 11.99.
    S. Lizzo: Luminescence of Yb2+, Eu2+ and Cu+ in solids, Ph.D. Thesis (Universiteit Utrecht, Utrecht 1995)Google Scholar
  100. 11.100.
    S. Lizzo, A. Meijerink, G.J. Dirksen, G. Blasse: Luminescence of divalent ytterbium in magnesium fluoride crystals, J. Lumin. 63, 223 (1995)CrossRefGoogle Scholar
  101. 11.101.
    S. Lizzo, A. Meijerink, G. Blasse: Luminescence of divalent ytterbium in alkaline earth sulphates, J. Lumin. 59, 185 (1995)CrossRefGoogle Scholar
  102. 11.102.
    S. Kück, M. Henke, K. Rademaker: Crystal growth and spectroscopic investigation of Yb2+ doped fluorides, Laser Phys. 11, 116 (2001)Google Scholar
  103. 11.103.
    S. Kück: Laser-related spectroscopy of ion-doped crystals for tunable solid state-lasers, Appl. Phys. B 72, 515 (2001)ADSCrossRefGoogle Scholar
  104. 11.104.
    A. Yariv, S.P.S. Porto, K. Nassau: Optical maser emission from trivalent praseodymium in calcium tungstate, J. Appl. Phys. 33, 2519 (1962)ADSCrossRefGoogle Scholar
  105. 11.105.
    A.A. Kaminskii: Achievements of modern crystal laser physics, Ann. Phys. (France) 16, 639 (1991)ADSGoogle Scholar
  106. 11.106.
    T. Sandrock, T. Danger, E. Heumann, G. Huber, B.H.T. Chai: Efficient continuous wave laser emission of Pr3+-doped fluorides at room temperature, Appl. Phys. B 58, 149 (1994)ADSCrossRefGoogle Scholar
  107. 11.107.
    A. Richter, E. Heumann, G. Huber, V. Ostroumov, W. Seelert: Power scaling of semiconductor laser pumped praseodymium-lasers, Opt. Express 15(8), 5172 (2007)ADSCrossRefGoogle Scholar
  108. 11.108.
    E. Heumann, C. Czeranowski, T. Kellner, G. Huber: An efficient all-solid-state Pr3+:LiYF_4 laser in the visible spectral range, Conf. Lasers Electroopt. (Opt. Soc. Am., Washington 1999) p. 86Google Scholar
  109. 11.109.
    Coherent, Inc.: Optically Pumped Semiconductor Laser (OPSL) Technology, Product page (Coherent, Santa Clara 2011) http://www.coherent.com/products/?1638/Sapphire-Lasers (last accessed December 19, 2011)
  110. 11.110.
    E. Osiac, E. Heumann, A. Richter, G. Huber, A. Diening, W. Seelert: Red Pr3+:YLiF_4 laser excited by 480 nm optically pumped semiconductor laser, Conf. Lasers Electroopt. (Opt. Soc. Am., Washington 2004)Google Scholar
  111. 11.111.
    A. Richter, N. Pavel, E. Heumann, G. Huber, D. Parisi, A. Toncelli, M. Tonelli, A. Diening, W. Seelert: Continuous-wave ultraviolet generation at 320 nm by intracavity frequency doubling of red-emitting praseodymium lasers, Opt. Express 14, 3282 (2006)ADSCrossRefGoogle Scholar
  112. 11.112.
    A. Richter: Laserparameter und -charakterisierung Pr3+-dotierter Fluoride im sichtbaren Spektralbereich. Ph.D. Thesis (University of Hamburg, Hamburg 2008), in GermanGoogle Scholar
  113. 11.113.
    F. Cornacchia, A. Richter, E. Heumann, G. Huber, D. Parisi, M. Tonelli: Visible laser emission of solid state pumped LiLuF4:Pr3+, Opt. Express 15(3), 992 (2007)ADSCrossRefGoogle Scholar
  114. 11.114.
    A.A. Kaminskii, H.J. Eichler, B. Liu, P. Meindl: LiYF_4:Pr3+ laser at 639.5 nm with 30 J flashlamp pumping and 87 mJ output energy, Phys. Status Solidi (a) 138, K45 (1993)ADSCrossRefGoogle Scholar
  115. 11.115.
    L. Esterowitz, R. Allen, M. Kruer, M. Bartoli, L.S. Goldberg, H.P. Jenssen, A. Linz, V.O. Nicolai: Blue light emission by a Pr:LiYF_4 – laser operated at room temperature, J. Appl. Phys. 48, 650 (1977)ADSCrossRefGoogle Scholar
  116. 11.116.
    A.A. Kaminskii: Visible lasing of five intermultiplet transitions of the ion Pr3+ in LiYF_4, Sov. Phys. Dokl. 28, 668 (1983)ADSGoogle Scholar
  117. 11.117.
    J.M. Sutherland, P.M.W. French, J.R. Taylor, B.H.T. Chai: Visible continuous-wave laser transitions in Pr3+:YLF and femtosecond pulse generation, Opt. Lett. 21, 797 (1996)ADSCrossRefGoogle Scholar
  118. 11.118.
    D.S. Knowles, Z. Zhang, D. Gabbe, H.P. Jenssen: Laser action of Pr3+ in LiYF_4 and spectroscopy of Eu2+-sensitized Pr in BaY_2F_8, IEEE J. Quantum Electron. 24, 1118 (1988)ADSCrossRefGoogle Scholar
  119. 11.119.
    A.A. Kaminskii, A.V. Pelevin: Low-threshold lasing of LiYF_4:Pr3+ crystals in the 0.72 μ m range as a result of flashlamp pumping at 300 K, Sov. J. Quantum Electron. 21, 819 (1991)ADSCrossRefGoogle Scholar
  120. 11.120.
    A.A. Kaminskii: Stimulated emission spectroscopy of Ln3+ ions in tetragonal LiLuF_4 fluoride, Phys. Status Solidi (a) 97, K53 (1986)ADSCrossRefGoogle Scholar
  121. 11.121.
    A.A. Kaminskii, A.A. Markosyan, A.V. Pelevin, Y.A. Polyakova, S.E. Sarkisov, T.V. Uvarova: Luminescence properties and stimulated emission from Pr3+, Nd3+ and Er3+ ions in tetragonal lithium-lutecium fluoride, Inorg. Mater. (USSR) 22, 773 (1986)Google Scholar
  122. 11.122.
    T. Danger, T. Sandrock, E. Heumann, G. Huber, B.H.T. Chai: Pulsed laser action of Pr:GdLiF_4 at room temperature, Appl. Phys. B 57, 239 (1993)ADSCrossRefGoogle Scholar
  123. 11.123.
    A.A. Kaminskii, B.P. Sobolev, T.V. Uvarova, M.I. Chertanov: Visible stmulated emission of Pr3+ ions in BaY_2F_8, Inorg. Mater. (USSR) 20, 622 (1984)Google Scholar
  124. 11.124.
    A.A. Kaminskii, S.E. Sarkisov: Stimulated-emission spectroscopy of Pr3+ ions in monoclinic BaY_2F_8 fluoride, Phys. Status Solidi (a) 97, K163 (1986)ADSCrossRefGoogle Scholar
  125. 11.125.
    A.A. Kaminskii: New room-temperature stimulated-emission channels of Pr3+ ions in anisotropic laser crystals, Phys. Status Solidi (a) 125, K109 (1991)ADSCrossRefGoogle Scholar
  126. 11.126.
    A.A. Kaminskii: Stimulated radiation at the transition 3 P 0 →3 F 4 and 3 P 0 →3 H 6 of Pr3+ ions in LaF_3 crystals, Izv. Akad. Nauk. SSSR 17, 185 (1981)Google Scholar
  127. 11.127.
    A.A. Kaminskii: Some current trends in physics and spectroscopy of laser crystals, Proc. Int. Conf. Lasers, ed. by C.B. Collins (STS, McLean 1981), 328Google Scholar
  128. 11.128.
    R. Solomon, L. Mueller: Stimulated emission at 5985 Å from Pr3+ in LaF_3, Appl. Phys. Lett. 3, 135 (1963)ADSCrossRefGoogle Scholar
  129. 11.129.
    A.A. Kaminskii: Achievements in the fields of physics and spectroscopy of insulating laser crystals. In: Lasers and Applications, Part I, Proc., ed. by I. Ursu, A.M. Prokhorov (CIP, Bucharest 1983) p. 97Google Scholar
  130. 11.130.
    J. Hegarty, W.M. Yen: Laser action in PrF_3, J. Appl. Phys. 51, 3545 (1980)ADSCrossRefGoogle Scholar
  131. 11.131.
    F. Cornacchia, A. Di Lieto, M. Tonelli, A. Richter, E. Heumann, G. Huber: Efficient visible laser emission of GaN laser diode pumped Pr-doped fluoride scheelite crystals, Opt. Express 16(20), 15932 (2008)ADSCrossRefGoogle Scholar
  132. 11.132.
    T. Gün, P. Metz, G. Huber: Power scaling of laser diode pumped Pr3+:YLiF_4 CW lasers: Efficient laser operation at 522.6 nm, 545.9 nm, 607.2 nm, and 639.5 nm, Opt. Lett. 35(6), 1002 (2011)CrossRefGoogle Scholar
  133. 11.133.
    N.-O. Hansen, A.-R. Bellancourt, U. Weichmann, G. Huber: Efficient green continuous-wave lasing of blue-diode-pumped solid-state lasers based on praseodymium-doped LiYF_4, Appl. Opt. 49(20), 3864 (2010)ADSCrossRefGoogle Scholar
  134. 11.134.
    P. Camy, J.L. Doualan, R. Moncorgé, J. Bengoechea, U. Weichmann: Diode-pumped Pr3+:KY3F10 red laser, Opt. Lett. 32(11), 1462 (2007)ADSCrossRefGoogle Scholar
  135. 11.135.
    M. Fechner, F. Reichert, N.-O. Hansen, K. Petermann, G. Huber: Crystal growth, spectroscopy, and diode pumped laser performance of Pr,Mg:SrAl12O19, Appl. Phys. B 102, 731 (2011)ADSCrossRefGoogle Scholar
  136. 11.136.
    F. Varsanyi: Surface lasers, Appl. Phys. Lett. 19, 169 (1971)ADSCrossRefGoogle Scholar
  137. 11.137.
    K.R. German, A. Kiel, H.J. Guggenheim: Stimulated emission from PrCl_3, Appl. Phys. Lett. 22, 87 (1973)ADSCrossRefGoogle Scholar
  138. 11.138.
    Z. Luo, A. Jiang, Y. Huang: Xenon flash lamp pumped self-frequency doubling NYAB pulsed laser, Chin. Phys. Lett. 6, 440 (1989)ADSCrossRefGoogle Scholar
  139. 11.139.
    K.R. German, A. Kiel, H.J. Guggenheim: Radiative and nonradiative transitions of Pr3+ in trichloride and tribromide hosts, Phys. Rev. B 11, 2436 (1975)ADSCrossRefGoogle Scholar
  140. 11.140.
    M. Malinowski, M.F. Joubert, B. Jacquier: Simultaneous laser action at blue and orange wavelengths in YAG:Pr3+, Phys. Status Solidi (a) 140, K49 (1993)ADSCrossRefGoogle Scholar
  141. 11.141.
    W. Wolinski, R. Wolski, M. Malinowski, Z. Mierczyk: Spectroscopic and laser properties of YAG:Pr3+ crystals. In: Proc. 10th Int. Congr. Laser, ed. by W. Waidelich (Springer, Berlin, Heidelberg 1992) p. 611Google Scholar
  142. 11.142.
    A.A. Kaminskii, A.G. Petrosyan, K.L. Ovanesyan, M.I. Chertanov: Stimulated emission of Pr3+ ions in YAlO_3 crystals, Phys. Status Solidi (a) 77, K173 (1983)ADSCrossRefGoogle Scholar
  143. 11.143.
    A.A. Kaminskii, A.G. Petrosyan, K.L. Ovanesyan: Stimulated emission spectroscopy of Pr3+ ions in YAlO_3 and LuAlO_3, Sov. Phys. Dokl. 32, 591 (1987)ADSGoogle Scholar
  144. 11.144.
    A.A. Kaminskii, K. Kurbanov, K.L. Ovanesyan, A.G. Petrosyan: Stimulated emission spectroscopy of Pr3+ ions in orthorhombic YAlO_3 single crystals, Phys. Status Solidi (a) 105, K155 (1988)ADSCrossRefGoogle Scholar
  145. 11.145.
    A. Bleckmann, F. Heine, J.P. Meyn, T. Danger, E. Heumann, G. Huber: CW-lasing of Pr:YAlO_3 at room temperature, Proc Adv. Solid-State Lasers Vol. 15, ed. by A.A. Pinto, T.Y. Fan (Opt. Soc. Am., Washington 1993) p. 199Google Scholar
  146. 11.146.
    A.A. Kaminskii, A.G. Petrosyan: New laser crystal for the excitation of stimulated radiation in the dark-red part of the spectrum at 300 K, Sov. J. Quantum Electron. 21, 486 (1991)ADSCrossRefGoogle Scholar
  147. 11.147.
    M. Malinowski, I. Pracka, B. Surma, T. Lukasiewicz, W. Wolinski, R. Wolski: Spectroscopic and laser properties of SrLaGa_3O_7:Pr3+ crystals, Opt. Mater. 6, 305 (1996)CrossRefGoogle Scholar
  148. 11.148.
    A.A. Kaminskii, A.G. Petrosyan, K.L. Ovanesyan: Stimulated emission of Pr3+, Nd3+ and Er3+ ions in crystals with complex anions, Phys. Status Solidi (a) 83, K159 (1984)ADSCrossRefGoogle Scholar
  149. 11.149.
    C. Szafranski, W. Strek, B. Jezowska-Trzebiatowska: Laser oscillation of a LiPrP_4O_12 single crystal, Opt. Commun. 47, 268 (1983)ADSCrossRefGoogle Scholar
  150. 11.150.
    M. Szymanski: Simultaneous operation at two different wavelengths of an PrLaP_5O_14 laser, Appl. Phys. 24, 13 (1981)ADSCrossRefGoogle Scholar
  151. 11.151.
    B. Borkowski, E. Crzesiak, F. Kaczmarek, Z. Kaluski, J. Karolczak, M. Szymanski: Chemical synthesis and crystal growth of laser quality praseodymium pentaphosphate, J. Cryst. Growth 44, 320 (1978)ADSCrossRefGoogle Scholar
  152. 11.152.
    M. Szymanski, J. Karolczak, F. Kaczmarek: Laser properties of praseodymium pentaphosphate single crystals, Appl. Phys. 19, 345 (1979)ADSCrossRefGoogle Scholar
  153. 11.153.
    H. Dornauf, J. Heber: Fluorescence of Pr3+-ions in La_1-xPr_xP_5O_14, J. Lumin. 20, 271 (1979)CrossRefGoogle Scholar
  154. 11.154.
    T. Danger, A. Bleckmann, G. Huber: Stimulated emission and laser action of Pr3+:doped YAlO, Appl. Phys. B 58(5), 413 (1994)ADSCrossRefGoogle Scholar
  155. 11.155.
    E. Osiac, S. Kück, E. Heumann, G. Huber, E. Sani, A. Toncelli, M. Tonelli: Spectroscopic characterisation of the upconversion avalanche mechanism in Pr3+, Yb3+:BaY_2F_8, Opt. Mater. 24, 537 (2003)ADSCrossRefGoogle Scholar
  156. 11.156.
    R. Scheps: Upconversion laser processes, Prog. Quantum Electron. 20, 271 (1996)ADSCrossRefGoogle Scholar
  157. 11.157.
    M.-F. Joubert: Photon avalanche upconversion in rare earth laser materials, Opt. Mater. 11, 181 (1999)ADSCrossRefGoogle Scholar
  158. 11.158.
    S. Guy, M.-F. Joubert, B. Jacquier: Photon avalanche and the mean-field approximation, Phys. Rev. B 55, 8240 (1997)ADSCrossRefGoogle Scholar
  159. 11.159.
    M.-F. Joubert, S. Guy, B. Jacquier: Model of the photon-avalanche effect, Phys. Rev. B 48, 10031 (1993)ADSCrossRefGoogle Scholar
  160. 11.160.
    A. Brenier, L.C. Courrol, C. Pedrini, C. Madej, G. Boulon: Excited state absorption and looping mechanism in Yb3+-Tm3+-Ho3+-doped Gd_3Ga_5O_12 garnet, Opt. Mater. 3, 25 (1994)CrossRefGoogle Scholar
  161. 11.161.
    E. Osiac, I. Sokólska, S. Kück: Evaluation of the upconversion mechanisms in Ho3+ doped crystals: Experiment and theoretical modelling, Phys. Rev. B 65, 235119 (2002)ADSCrossRefGoogle Scholar
  162. 11.162.
    S. Kück, A. Diening, E. Heumann, E. Mix, T. Sandrock, K. Sebald, G. Huber: Avalanche up-conversion processes in Pr, Yb-doped materials, J. Alloys Compd. 300-301, 65 (2000)CrossRefGoogle Scholar
  163. 11.163.
    E. Osiac, E. Heumann, S. Kück, G. Huber, E. Sani, A. Toncelli, M. Tonelli: Orange and red upconversion laser pumped by an avalanche mechanism in Pr3+, Yb3+:BaY_2F_8, Appl. Phys. Lett. 82, 3832 (2003)ADSCrossRefGoogle Scholar
  164. 11.164.
    T. Sandrock, E. Heumann, G. Huber, B.H.T. Chai: Continuous-wave Pr,Yb:LiYF_4 upconversion laser in the red spectral range at room temperature, OSA Proc. Adv. Solid-State Lasers, Vol. 1, ed. by S.A. Payne, C. Pollack (Opt. Soc. Am., Washington 1996) p. 550Google Scholar
  165. 11.165.
    E. Heumann, S. Kück, G. Huber: High-power room-temperature Pr3+,Yb3+:LiYF_4 upconversion laser in the visible spectral range. In: Conf. Lasers Electroopt., OSA Technical Digest (Opt. Soc. Am., Washington 2000) p. 15Google Scholar
  166. 11.166.
    S. Kück, G. Huber: Diodengepumpte Festkörperlaser, Physikalische Blätter 57, 43 (2001), in GermanGoogle Scholar
  167. 11.167.
    V. Lupei, E. Osiac, T. Sandrock, E. Heumann, G. Huber: Excited state dynamics in sensitized photon avalanche processes, J. Lumin. 76, 441 (1998)CrossRefGoogle Scholar
  168. 11.168.
    G. Huber, E. Heumann, T. Sandrock, K. Petermann: Up-conversion processes in laser crystals, J. Lumin. 72-74, 1 (1997)CrossRefGoogle Scholar
  169. 11.169.
    P. Xie, T.R. Gosnell: Room-temperature upconversion fiber laser tunable in the red, orange, green and blue spectral range, Opt. Lett. 20, 1014 (1995)ADSCrossRefGoogle Scholar
  170. 11.170.
    T. Sandrock, H. Scheife, E. Heumann, G. Huber: High-power continuous-wave upconversion fiber laser at room temperature, Opt. Lett. 22, 808 (1997)ADSCrossRefGoogle Scholar
  171. 11.171.
    H. Scheife, T. Sandrock, E. Heumann, G. Huber: Pr, Yb-doped upconversion fiber laser exceeding 1 W of continuous-wave output in the red spectral range, OSA Trends Opt. Photonics, Vol. 10, ed. by C. Pollock, W.R. Bosenberg (Opt. Soc. Am., Washington 1997) p. 79Google Scholar
  172. 11.172.
    M.E. Koch, A.W. Kueny, W.E. Case: Photon avalanche laser at 644 nm, Appl. Phys. Lett. 56, 1083 (1990)ADSCrossRefGoogle Scholar
  173. 11.173.
    R.M. Macfarlane, A.J. Silversmith, F. Tong, W. Lenth: CW upconversion laser action in neodymium and erbium doped solids. In: Proceedings of the Topical Meeting on Laser Materials and Laser Spectroscopy, ed. by Z. Wang, Z. Zhang (World Scientific, Singapore 1988) p. 24Google Scholar
  174. 11.174.
    R.M. Macfarlane, F. Tong, A.J. Silversmith, W. Lenth: Violet CW neodymium upconversion laser, Appl. Phys. Lett. 52, 1300 (1988)ADSCrossRefGoogle Scholar
  175. 11.175.
    W. Lenth, R.M. Macfarlane: Excitation mechanisms for upconversion lasers, J. Lumin. 45, 346 (1990)CrossRefGoogle Scholar
  176. 11.176.
    R.J. Thrash, R.H. Jarman, B.H.T. Chai, A. Pham: Upconversion green laser operation of Yb, Ho:KYF_4, Compact Blue Green Lasers Conf. (Opt. Soc. Am., Washington 1994), CFA5Google Scholar
  177. 11.177.
    L.F. Johnson, H.J. Guggenheim: Infrared-pumped visible laser, Appl. Phys. Lett. 19, 44 (1971)ADSCrossRefGoogle Scholar
  178. 11.178.
    D.C. Nguyen, G.E. Faulkner, M. Dulick: Blue-green (450-nm) upconversion Tm3+:YLF laser, Appl. Opt. 28, 3553 (1989)ADSCrossRefGoogle Scholar
  179. 11.179.
    R.M. Macfarlane, R. Wannemacher, T. Hebert, W. Lenth: Upconversion laser action at 450.2 and 483.0 nm in Tm:YLiF_4, Tech. Dig. Conf. Lasers Electroopt. (Opt. Soc. Am., Washington 1990) p. 250Google Scholar
  180. 11.180.
    T. Hebert, R. Wannemacher, R.M. Macfarlane, W. Lenth: Blue continuously pumped upconversion lasing in Tm:YLiF_4, Appl. Phys. Lett. 60, 2592 (1992)ADSCrossRefGoogle Scholar
  181. 11.181.
    B.P. Scott, F. Zhao, R.S.F. Chang, N. Djeu: Upconversion-pumped blue laser in Tm:YAG, Opt. Lett. 18, 113 (1993)ADSCrossRefGoogle Scholar
  182. 11.182.
    R.J. Thrash, L.F. Johnson: Upconversion laser emission from Yb3+-sensitized Tm3+ in BaY_2F_8, J. Opt. Soc. Am. B 11, 881 (1994)ADSCrossRefGoogle Scholar
  183. 11.183.
    R.J. Thrash, L.F. Johnson: Ultraviolet upconversion laser emission from Yb3+ sensitized Tm3+ in BaY_2F_8, OSA Proc. Adv. Solid State Lasers, Vol. 20, ed. by T. Fan, B. Chai (Opt. Soc. Am., Washington 1994), paper US7Google Scholar
  184. 11.184.
    B.M. Antipenko, S.P. Voronin, T.A. Privalova: Addition of optical frequencies by cooperative processes, Opt. Spectrosc. 63, 164 (1987)Google Scholar
  185. 11.185.
    F. Heine, V. Ostroumov, E. Heumann, T. Jensen, G. Huber, B.H.T. Chai: CW Yb,Tm:LiYF_4 upconversion laser at 650 nm, 800 nm, and 1500 nm, OSA Proc. Adv. Solid-State Lasers, Vol. 24, ed. by B.H.T. Chai, S.A. Payne (Opt. Soc. Am., Washington 1995) p. 77Google Scholar
  186. 11.186.
    L.F. Johnson, H.J. Guggenheim: New laser lines in the visible from Er3+ ions in BaY_2F_8, Appl. Phys. Lett. 20, 474 (1972)ADSCrossRefGoogle Scholar
  187. 11.187.
    A.A. Kaminskii, B.P. Sobolev, S.E. Sarkisov, G.A. Denisenko, V.V. Ryabchenkov, V.A. Federov, T.V. Ovarova: Physiochemical aspects of the preparation, spectroscopy, and stimulated emission of single crystals of BaLn_2F_8-Ln3+, Inorg. Mater. (USSR) 18, 402 (1982)Google Scholar
  188. 11.188.
    R. Brede, T. Danger, E. Heumann, G. Huber: Room temperature green laser emission of Er:LiYF_4, Appl. Phys. Lett. 63, 729 (1993)ADSCrossRefGoogle Scholar
  189. 11.189.
    S. Bär, H. Scheife, E. Heumann, G. Huber: Room-temperature continuous-wave Er3+:LiLuF_4 upconversion laser at 552 nm, Conf. Lasers Electroopt./Europe 2000, Technical Digest (IEEE, 2000), CTuF3Google Scholar
  190. 11.190.
    E. Heumann, S. Bär, H. Kretschmann, G. Huber: Diode-pumped continuous-wave green upconversion lasing of Er3+:LiLuF_4 using multipass pumping, Opt. Lett. 27, 1699 (2002)ADSCrossRefGoogle Scholar
  191. 11.191.
    F. Heine, E. Heumann, T. Danger, T. Schweizer, G. Huber, B.H.T. Chai: Green upconversion continuous wave Er3+:LiYF_4 laser at room temperature, Appl. Phys. Lett. 65, 383 (1994)ADSCrossRefGoogle Scholar
  192. 11.192.
    A. Smith, J.P.D. Martin, M.J. Sellars, N.B. Manson, A.J. Silversmith, B. Henderson: Site selective excitation, upconversion and laser operation in Er3+:LiKF_5, Opt. Commun. 188, 219 (2001)ADSCrossRefGoogle Scholar
  193. 11.193.
    M.G. Jani, N.P. Barnes, K.E. Murray, D.W. Hart, G.J. Quarles, V.K. Castillo: Diode-pumped Ho:Tm:LuLiF_4 laser at room temperature, IEEE J. Quantum Electron. 33, 112 (1997)ADSCrossRefGoogle Scholar
  194. 11.194.
    E.D. Filer, C.A. Morrison, N.P. Barnes, B.M. Walsh: YLF isomorphs for Ho and Tm laser applications, Adv. Solid State Lasers, Vol. 20, ed. by T. Fan, B. Chai (Opt. Soc. Am., Washington 1994) p. 127Google Scholar
  195. 11.195.
    A.J. Silversmith, W. Lenth, R.M. Macfarlane: Green infrared-pumped erbium upconversion laser, Appl. Phys. Lett. 51, 1977 (1987)ADSCrossRefGoogle Scholar
  196. 11.196.
    R. Scheps: Er3+:YAlO_3 upconversion laser, IEEE J. Quantum Electron. 30, 2914 (1994)ADSCrossRefGoogle Scholar
  197. 11.197.
    R. Scheps: Photon avalanche upconversion in Er3+:YAlO_3, IEEE J. Quantum Electron. 31, 309 (1995)ADSCrossRefGoogle Scholar
  198. 11.198.
    R. Scheps: Upconversion in Er3+:YAlO_3 produced by metastable state absorption, Opt. Mater. 7, 75 (1997)ADSCrossRefGoogle Scholar
  199. 11.199.
    R. Brede, E. Heumann, J. Koetke, T. Danger, G. Huber, B. Chai: Green up-conversion laser emission in Er-doped crystals at room temperature, Appl. Phys. Lett. 63, 2030 (1993)ADSCrossRefGoogle Scholar
  200. 11.200.
    P. Xie, S.C. Rand: Continuous-wave trio upconversion laser, Appl. Phys. Lett. 57, 1182 (1990)ADSCrossRefGoogle Scholar
  201. 11.201.
    W. Lenth, A.J. Silversmith, R.M. Macfarlane: Green infrared-pumped erbium upconversion lasers, Advances in Laser Science III, AIP Conf. Proc., Vol. 172, ed. by A.C. Tam, J.L. Gole, W.C. Stwalley (AIP, New York 1989) p. 8Google Scholar
  202. 11.202.
    R.A. McFarlane: Dual wavelength visible upconversion laser, Appl. Phys. Lett. 54, 2301 (1989)ADSCrossRefGoogle Scholar
  203. 11.203.
    F. Tong, W.P. Risk, R.M. Macfarlane, W. Lenth: 551 nm diode-laser-pumped upconversion laser, Electron. Lett. 25, 1389 (1989)ADSCrossRefGoogle Scholar
  204. 11.204.
    G.C. Valley, R.A. McFarlane: 1.1-Watt visible upconversion laser modelling and experiment, OSA Proc. Adv. Solid-State Lasers, Vol. 13, ed. by L.L. Chase, A.A. Pinto (Opt. Soc. Am., Washington 1992) pp. 376–379Google Scholar
  205. 11.205.
    T. Heber, W.P. Risk, R.M. Macfarlane, W. Lenth: Diode-laser-pumped 551 nm upconversion laser in YLiF_4:Er3+. In: OSA Proc. Adv. Solid-State Lasers, ed. by H.J. Jenssen, G. Dube (Opt. Soc. Am., Washington 1990) p. 379Google Scholar
  206. 11.206.
    R.R. Stephens, R.A. McFarlane: Diode-pumped upconversion laser with 100-mW output power, Opt. Lett. 18, 34 (1993)ADSCrossRefGoogle Scholar
  207. 11.207.
    P. Xie, S.C. Rand: Continuous-wave, fourfold upconversion laser, Appl. Phys. Lett. 63, 3125 (1993)ADSCrossRefGoogle Scholar
  208. 11.208.
    F. Heine, E. Heumann, P. Möbert, G. Huber, B.H.T. Chai: Room temperature CW green upconversion Er3+:YLiF_4-laser pumped near 970 nm, OSA Proc. Adv. Solid State Lasers, Vol. 24, ed. by B. Chai, S. Payne (Opt. Soc. Am., Washington 1995)Google Scholar
  209. 11.209.
    P.E. Möbert, E. Heumann, G. Huber, B.H. Chai: Green Er3+:YLiF_4 upconversion laser at 551 nm with Yb3+ codoping: A novel pumping scheme, Opt. Lett. 22, 1412 (1997)ADSCrossRefGoogle Scholar
  210. 11.210.
    R.M. Macfarlane, E.A. Whittaker, W. Lenth: Blue, green and yellow upconversion lasing in Er:YLiF_4 using 1.5 μ m pumping, Electron. Lett. 28, 2136 (1992)CrossRefGoogle Scholar
  211. 11.211.
    R.A. McFarlane: High-power visible upconversion laser, Opt. Lett. 16, 1397 (1991)ADSCrossRefGoogle Scholar
  212. 11.212.
    P. Xie, S.C. Rand: Visible cooperative upconversion laser in Er:LiYF_4, Opt. Lett. 17, 1198 (1992)ADSCrossRefGoogle Scholar
  213. 11.213.
    P. Xie, S.C. Rand: Continuous-wave mode-locked visible upconversion laser: Erratum, Opt. Lett. 17, 1882 (1992)Google Scholar
  214. 11.214.
    P. Xie, S.C. Rand: Continuous-wave mode-locked visible upconversion laser, Opt. Lett. 17, 1116 (1992)ADSCrossRefGoogle Scholar
  215. 11.215.
    T. Hebert, R. Wannemacher, W. Lenth, R.M. Macfarlane: Blue and green CW upconversion lasing in Er:YLiF_4, Appl. Phys. Lett. 57, 1727 (1990)ADSCrossRefGoogle Scholar
  216. 11.216.
    S.A. Pollack, D.B. Chang, M. Birnbaum: Threefold upconversion laser at 0.85, 1.23, and 1.73 μ m in Er:YLF pumped with a 1.53 μ m Er glass laser, Appl. Phys. Lett. 54, 869 (1989)ADSCrossRefGoogle Scholar
  217. 11.217.
    E. Heumann, S. Bär, K. Rademaker, G. Huber, S. Butterworth, A. Diening, W. Seelert: Semiconductor-laser-pumped high-power upconversion laser, Appl. Phys. Lett. 88, 061108 (2006)ADSCrossRefGoogle Scholar
  218. 11.218.
    B.M. Antipenko, S.P. Voronin, T.A. Privalova: Addition of optical frequencies by cooperative processes, Opt. Spectrosc. (USSR) 63, 768 (1987)ADSGoogle Scholar
  219. 11.219.
    R.A. McFarlane: Spectroscopic Studies and Upconversion Laser Operation of BaY_2F_8:Er 5 %. In: OSA Proc. Adv. Solid State Lasers, Vol. 13, ed. by L.L. Chase, A.A. Pinto (Opt. Soc. Am., Washington 1992) pp. 275–279Google Scholar
  220. 11.220.
    R.A. McFarlane: Upconversion laser in BaY_2F_8:Er 5 % pumped by ground-state and excited-state absorption, J. Opt. Soc. Am. B 11, 871 (1994)ADSCrossRefGoogle Scholar
  221. 11.221.
    B.N. Kazakov, M.S. Orlov, M.V. Petrov, A.L. Stolov, A.M. Tkachuk: Induced emission of Sm3+-ions in the visible region of the spectrum, Opt. Spectrosc. (USSR) 47, 676 (1979)ADSGoogle Scholar
  222. 11.222.
    P.P. Sorokin, M.J. Stevenson, J.R. Lankard, G.D. Pettit: Spectroscopy and optical maser action in SrF_2:Sm2+, Phys. Rev. B 127, 503 (1962)ADSCrossRefGoogle Scholar
  223. 11.223.
    N.C. Chang: Fluorescence and stimulated emission from trivalent europium in yttrium oxide, J. Appl. Phys. 34, 3500 (1963)ADSCrossRefGoogle Scholar
  224. 11.224.
    J.R. OʼConnor: Optical and laser properties of Nd3+- and Eu3+-doped YVO_4, Trans. Metallurg. Soc. AIME 239, 362 (1967)Google Scholar
  225. 11.225.
    Z.T. Azamatov, P.A. Arsenyev, M.V. Chukichev: Spectra of gadolinium in YAG single crystals, Opt. Spectrosc. 28, 156 (1970)Google Scholar
  226. 11.226.
    H.P. Jenssen, D. Castleberry, D. Gabbe, A. Linz: Stimulated emission at 5445 Å in Tb3+:YLF, IEEE J. Quantum Electron. 9(6), 665 (1973)ADSCrossRefGoogle Scholar
  227. 11.227.
    Y.K. Voronko, A.A. Kaminskii, V.V. Osiko, A.M. Prokhorov: Simulated emission from Ho3+ in CaF_2 at 5512 Å, JETP Letters 1, 3 (1965)ADSGoogle Scholar
  228. 11.228.
    K. Schmitt: Stimulated Cʼ-emission of Ag+-centers in KI, RbBr, and CsBr, Appl. Phys. A 38, 61 (1985)ADSCrossRefGoogle Scholar
  229. 11.229.
    M.J. Weber: The Handbook of Lasers (CRC, Boca Raton 1999)Google Scholar
  230. 11.230.
    G.G. Smart, D.C. Hanna, A.C. Tropper, S.T. Davey, S.F. Carter, D. Szebesta: CW room temperature upconversion lasing at blue, green and red wavelengths in infrared-pumped Pr3+-doped fluoride fiber, Electron. Lett. 27, 1307 (1991)ADSCrossRefGoogle Scholar
  231. 11.231.
    H.M. Pask, A.C. Tropper, D.C. Hanna: A Pr3+-doped ZBLAN fiber upconversion laser pumped by an Yb3+-doped silica fiber laser, Opt. Commun. 134, 139 (1997)ADSCrossRefGoogle Scholar
  232. 11.232.
    J.Y. Allain, M. Monerie, H. Poignant: Red upconversion Yb-sensitised Pr fluoride fiber laser pumped in 0.8 μ m region, Electron. Lett. 27, 1156 (1991)ADSCrossRefGoogle Scholar
  233. 11.233.
    D. Piehler, D. Craven, N. Kwong, H. Zarem: Laser-diode-pumped red and green up-conversion fiber lasers, Electron. Lett. 29, 1857 (1993)CrossRefGoogle Scholar
  234. 11.234.
    D.M. Baney, L. Yang, J. Ratcliff, K.W. Chang: Red and orange Pr3+/Yb3+ doped ZBLAN fiber upconversion lasers, Electron. Lett. 31, 1842 (1995)CrossRefGoogle Scholar
  235. 11.235.
    D.M. Baney, R. Rankin, K.W. Chang: Simultaneous blue and green upconversion lasing in a laser-diode pumped Pr3+/Yb3 doped fluoride fiber laser, Appl. Phys. Lett. 69, 1662 (1996)ADSCrossRefGoogle Scholar
  236. 11.236.
    Y. Zhao, S. Fleming: All-solid state and all-fiber blue upconversion laser, Electron. Lett. 32, 1199 (1996)CrossRefGoogle Scholar
  237. 11.237.
    H. Zellmer, K. Plamann, G. Huber, H. Scheife, A. Tünnermann: Visible double-clad upconversion fiber laser, Electron. Lett. 34, 565 (1998)CrossRefGoogle Scholar
  238. 11.238.
    H. Zellmer, P. Riedel, A. Tünnermann, M. Kempe: High power multi mode visible upconversion fiber laser in the red spectral range, CLEO/Europe-EQEC Focus Meetings 2001 (2001) p. 143Google Scholar
  239. 11.239.
    H. Zellmer, P. Riedel, A. Tünnermann, M. Kempe: High-power diode pumped upconversion fiber laser in red and green spectral range, Electron. Lett. 38, 1250 (2002)CrossRefGoogle Scholar
  240. 11.240.
    H. Zellmer, P. Riedel, A. Tünnermann: Visible upconversion lasers in praseodymium-ytterbium-doped fibers, Appl. Phys. B 69, 417 (1999)ADSCrossRefGoogle Scholar
  241. 11.241.
    D.M. Costantini, H.G. Limberger, T. Lasser, C.A.P. Muller, H. Zellmer, P. Riedel, A. Tünnermann: Actively mode-locked visible upconversion fiber laser, Opt. Lett. 25, 1445 (2000)ADSCrossRefGoogle Scholar
  242. 11.242.
    M. Zeller, H.G. Limberger, T. Lasser: Tunable Pr3+-Yb3+-doped all-fiber upconversion laser, IEEE Photonics Technol. Lett. 15, 194 (2003)ADSCrossRefGoogle Scholar
  243. 11.243.
    A. Richter, H. Scheife, E. Heumann, G. Huber, W. Seelert, A. Diening: Semiconductor laser pumping of contiuous-wave Pr3+-doped ZBLAN fiber laser, Electron. Lett. 41, 794 (2005)CrossRefGoogle Scholar
  244. 11.244.
    D.S. Funk, J.G. Eden: Visible fluoride fiber lasers. In: Rare-Earth-Doped Fiber Lasers and Amplifiers, ed. by M.J.F. Digonnet (Marcel Dekker, New York 2001) pp. 171–242, Chap. 4Google Scholar
  245. 11.245.
    A.C. Tropper, J.N. Carter, R.D.T. Lauder, D.C. Hanna, S.T. Davey, D. Szebesta: Analysis of blue and red laser performance of the infrared-pumped praseodymium-doped fluoride fiber laser, J. Opt. Soc. Am. B 11, 886 (1994)ADSCrossRefGoogle Scholar
  246. 11.246.
    Y. Zhao, S. Fleming: Theory of Pr3+-doped fluoride fiber upconversion lasers, IEEE J. Quantum Electron. 33, 905 (1997)ADSCrossRefGoogle Scholar
  247. 11.247.
    H. Okamoto, K. Kasuga, I. Hara, Y. Kubota: Over-10 mW broadband Pr3+:ZBLAN-fiber light source at 635 nm pumped by GaN LD, Electron. Lett. 44(23), 1346 (2008)CrossRefGoogle Scholar
  248. 11.248.
    H. Okamoto, K. Kasuga, I. Hara, Y. Kubota: Visible–NIR tunable Pr3+-doped fiber laser pumped by a GaN laser diode, Opt. Express 17(22), 20227 (2009)ADSCrossRefGoogle Scholar
  249. 11.249.
    D.S. Funk, J.W. Carlson, J.G. Eden: Ultraviolet (381 nm), room temperature laser in neodymium-doped fluorozirconate fiber, Electron. Lett. 30, 1859 (1994)CrossRefGoogle Scholar
  250. 11.250.
    D.S. Funk, J.W. Carlson, J.G. Eden: Room-temperature fluorozirconate glass fiber laser in the violet, Opt. Lett. 20, 1474 (1995)ADSCrossRefGoogle Scholar
  251. 11.251.
    M.P. LeFlohic, J.Y. Allain, G.M. Stéphan, G. Mazé: Room-temperature continuous-wave upconversion laser 455 nm in a Tm3+ fluorozirconate fiber, Opt. Lett. 19, 1982 (1994)ADSCrossRefGoogle Scholar
  252. 11.252.
    I.J. Booth, C.J. Mackechnie, B.F. Ventrudo: Operation of diode laser pumped Tm3+ ZBLAN upconversion fiber laser at 482 nm, IEEE J. Quantum Electron. 32, 118 (1996)ADSCrossRefGoogle Scholar
  253. 11.253.
    R. Paschotta, N. Moore, W.A. Clarkson, A.C. Tropper, D.C. Hanna, G. Mazé: 230 mW of blue light from thulium:ZBLAN upconversion fiber laser, Conf. Laser Electropt. (Opt. Soc. Am., Washington 1997), CTuG3Google Scholar
  254. 11.254.
    G. Tohmon, J. Ohya, H. Sato, T. Uno: Increased efficiency and decreased threshold in Tm:ZBLAN blue fiber laser co-pumped by 1.1 μ m and 0.68 μ m light, IEEE Photonics Technol. Lett. 7, 742 (1995)Google Scholar
  255. 11.255.
    S.G. Grubb, K.W. Bennett, R.S. Cannon, W.F. Humer: CW room-temperature blue upconversion fiber laser, Electron. Lett. 28, 1243 (1992)ADSCrossRefGoogle Scholar
  256. 11.256.
    S. Sanders, R.G. Waarts, D.G. Mehuys, D.F. Welch: Laser diode pumped 106 mW blue upconversion fiber laser, Appl. Phys. Lett. 25, 1815 (1995)ADSCrossRefGoogle Scholar
  257. 11.257.
    G. Tohmon, H. Sato, J. Ohya, T. Uno: Thulium:ZBLAN blu fiber laser pumped by two wavelengths, Appl. Opt. 36, 3381 (1997)ADSCrossRefGoogle Scholar
  258. 11.258.
    P. Laperle, R. Vallée, A. Chandonnet: Stable blue emission from a 2500 ppm thulium-doped ZBLAN fiber laser, Conf. Laser Electroopt. (Opt. Soc. Am., Washington 1998), CTuE1Google Scholar
  259. 11.259.
    P.R. Barber, H.M. Pask, C.J. Mackechnie, D.C. Hanna, A.C. Tropper, J. Massicott, S.T. Daveys, D. Szebesta: Improved laser performance of Tm3+ and Pr3+-doped ZBLAN fibers, Conf. Laser Electro-Optics (Opt. Soc. Am., Washington 1994), CMF3Google Scholar
  260. 11.260.
    H. Zellmer, A. Tünnermann, H. Welling, S. Buteau: All fiber laser system with 0.3 W output power in the blue spectral range, Conf. Laser Electroopt. (Opt. Soc. Am., Washington 1997), CTuG3Google Scholar
  261. 11.261.
    H. Zellmer, S. Buteau, A. Tünnermann, H. Welling: All fiber laser system with 0.1 W output power in blue spectral range, Electron. Lett. 33, 1383 (1997)CrossRefGoogle Scholar
  262. 11.262.
    G. Qin, S. Huang, Y. Feng, A. Shirakawa, M. Musha, K.-J. Ueda: Power scaling of Tm3+ doped ZBLAN blue upconversion fiber lasers: Modeling and experiment, Appl. Phys. B 82, 6 (2006)CrossRefGoogle Scholar
  263. 11.263.
    J. Limpert, H. Zellmer, P. Riedel, G. Mazé, A. Tünnermann: Laser oscillation in yellow and blue spectral range in Dy3+:ZBLAN, Electron. Lett. 36, 1386 (2000)CrossRefGoogle Scholar
  264. 11.264.
    T.J. Whitley, C.A. Millar, R. Wyatt, M.C. Brierley, D. Szebesta: Upconversion pumped green lasing in erbium doped fluorozircnate fiber, Electron. Lett. 27, 1785 (1991)ADSCrossRefGoogle Scholar
  265. 11.265.
    J.F. Massicott, M.C. Brierley, R. Wyatt, S.T. Davey, D. Szebesta: Low threshold, diode-pumped operation of a green, Er3+ doped fluoride fiber laser, Electron. Lett. 29, 2119 (1993)CrossRefGoogle Scholar
  266. 11.266.
    D. Piehler, D. Craven, N. Kwong: Green, laser-diode-pumped erbium fiber laser, OSA Topical Meet. Compact Blue/Green Lasers (Opt. Soc. Am., Washington 1994), CFA2Google Scholar
  267. 11.267.
    J.Y. Allain, M. Monerie, H. Poignant: Tunable green upconversion erbium fiber laser, Electron. Lett. 28, 111 (1992)CrossRefGoogle Scholar
  268. 11.268.
    D. Piehler, D. Craven: 11.7 mW green InGaAs-laser-pumped erbium fiber laser, Electron. Lett. 30, 1759 (1994)CrossRefGoogle Scholar
  269. 11.269.
    J.Y. Allain, M. Monerie, H. Poignant: Room temperature CW tunable green upconversion holmium fiber laser, Electron. Lett. 26, 261 (1990)CrossRefGoogle Scholar
  270. 11.270.
    J.Y. Allain, M. Monerie, H. Poignant: Characteristics and dynamics of a room temperature CW tunable green upconversion fiber laser, Proc. 16th Eur. Conf. Opt. Commun. (Amsterdam 1990) p. 575Google Scholar
  271. 11.271.
    D.S. Funk, S.B. Stevens, S.S. Wu, J.G. Eden: Tuning, temporal, and spectral characteristics of a green (λ ≈549  nm) holmium-doped fluorozirconate glass fiber laser, IEEE J. Quantum Electron. 32, 638 (1996)ADSCrossRefGoogle Scholar
  272. 11.272.
    D.S. Funk, J.G. Eden, J.S. Osinski, B. Lu: Green, holmium-doped upconversion fiber laser pumped by a red semiconductor laser, Electron. Lett. 33, 1958 (1997)CrossRefGoogle Scholar
  273. 11.273.
    D.S. Funk: Optical processes and laser dynamics in holmium and neodymium upconversion-pumped visible and ultraviolet fluorozirconate fiber lasers. Ph.D. Thesis (University of Illinois, Urbana 1999)Google Scholar
  274. 11.274.
    M.L. Dennis, J.W. Dixon, T. Aggarwal: High power upconversion lasing at 810 nm in Tm:ZBLAN fiber, Electron. Lett. 30, 136 (1994)CrossRefGoogle Scholar
  275. 11.275.
    W.A. Clarkson, D.C. Hanna: Two-mirror beam-shaping technique for high power diode bars, Opt. Lett. 21(6), 375 (1996)ADSCrossRefGoogle Scholar
  276. 11.276.
    D. Golla, M. Bode, S. Knoke, W. Schöne, A. Tünnermann: 62 W CW TEM00 Nd:YAG laser side-pumped by fiber-coupled diode laser, Opt. Lett. 21(3), 210 (1996)ADSCrossRefGoogle Scholar
  277. 11.277.
    P. Glas, D. Fischer, M. Moenster, G. Steinmeyer, R. Iliew, C. Etrich, M. Kreitel, L.E. Nilsson, R. Koppler: Large-mode-area Nd-doped single-transverse-mode dual-wavelength microstructure fiber laser, Opt. Express 13(20), 7884 (2005)ADSCrossRefGoogle Scholar
  278. 11.278.
    L.B. Fu, M. Ibsen, D.J. Richardson, J. Nilsson, D.N. Payne, A.B. Grudinin: Compact high-power tunable three-level operation of double cladding Nd-doped fiber laser, IEEE Photonics Technol. Lett. 17(2), 306 (2005)ADSCrossRefGoogle Scholar
  279. 11.279.
    H. Jeong, S. Choi, K. Oh: Continuous wave single transverse mode laser oscillation in a Nd-doped large core double clad fiber cavity with concatenated adiabatic tapers, Opt. Commun. 213(1-3), 33 (2002)ADSCrossRefGoogle Scholar
  280. 11.280.
    P. Glas, D. Fischer: Cladding pumped large-mode-area Nd-doped holey fiber laser, Opt. Express 10(6), 286 (2002)ADSGoogle Scholar
  281. 11.281.
    E. Rochat, R. Dandliker, K. Haroud, R.H. Czichy, U. Roth, D. Costantini, R. Holzner: Fiber amplifiers for coherent space communication, IEEE J. Sel. Top. Quantum Electron. 7(1), 64 (2001)CrossRefGoogle Scholar
  282. 11.282.
    B.M. Dicks, F. Heine, K. Petermann, G. Huber: Characterization of a radiation-hard single-mode Yb-doped fiber amplifier at 1064 nm, Laser Phys. 11(1), 134 (2001)Google Scholar
  283. 11.283.
    N.S. Kim, T. Hamada, M. Prabhu, C. Li, J. Song, K. Ueda, A.P. Liu, H.J. Kong: Numerical analysis and experimental results of output performance for Nd-doped double-clad fiber lasers, Opt. Commun. 180(4-6), 329 (2000)ADSCrossRefGoogle Scholar
  284. 11.284.
    I. Zawischa, K. Plamann, C. Fallnich, H. Welling, H. Zellmer, A. Tunnermann: All-solid-state neodymium-based single-frequency master-oscillator fiber power-amplifier system emitting 5.5 W of radiation at 1064 nm, Opt. Lett. 24(7), 469 (1999)ADSCrossRefGoogle Scholar
  285. 11.285.
    E. Rochat, K. Haroud, U. Roth, J.E. Balmer, R. Dandliker, H.P. Weber: High-gain solid-state and fiber amplifier-chain for high-power coherent communication, IEEE Photonics Technol. Lett. 11(9), 1120 (1999)ADSCrossRefGoogle Scholar
  286. 11.286.
    R. Nicolaescu, T. Walther, E.S. Fry, M. Muendel: Ultranarrow-linewidth, efficient amplification of low-power seed sources by a fiber amplifier, Appl. Opt. 38(9), 1784 (1999)ADSCrossRefGoogle Scholar
  287. 11.287.
    T. Miyazaki, K. Inagaki, Y. Karasawa, M. Yoshida: Nd-doped double-clad fiber amplifier at 1.06 μ m, J. Lightwave Technol. 16(4), 562 (1998)ADSCrossRefGoogle Scholar
  288. 11.288.
    M. Wegmuller, M. Schurch, W. Hodel, H.P. Weber: Diode-pumped passively mode-locked Nd3+-doped fluoride fiber laser emitting at 1.05 μ m: Novel results, IEEE J. Quantum Electron. 34(1), 14 (1998)ADSCrossRefGoogle Scholar
  289. 11.289.
    A. Prokohorov: Spravochnik pr Lazerum, Handbook on Lasers, Vol. 1 (Sovet-skoe Radio, Moscow 1978)Google Scholar
  290. 11.290.
    L.J. Qin, X.L. Meng, H.Y. Shen, H.Y. Zhu, B.C. Xu, L.X. Huang, H.R. Xia, P. Zhao, G. Zheng: Thermal conductivity and refractive indices of Nd:GdVO_4, Cryst. Res. Technol. 38, 793 (2003)CrossRefGoogle Scholar
  291. 11.291.
    A.I. Zagummenyi, Y. Zavartsev, P. Studenikin, I.A. Sherbakov, A. Umyskov, P.A. Popov, V.B. Ufimtsev: GdVO_4 crystals with Nd3+, Tm3+, Ho3+, and Er3+ ions for diode-pumped microchip laser, Proc. SPIE 2698, 182–192 (1996)ADSCrossRefGoogle Scholar
  292. 11.292.
    C. Kränkel, D. Fagundes-Peters, S.T. Fredrich, J. Johannsen, M. Mond, G. Guber, M. Bernhagen, R. Uecker: Continuous wave laser operation of Yb3+:YVO_4, Appl. Phys. B 79, 543 (2004)ADSCrossRefGoogle Scholar
  293. 11.293.
    C. Czeranowsky: Resonatorinterne Frequenzverdopplung von diodengepumpten Neodym-Lasern mit hohen Ausgangsleistungen im blauen Spektralbereich. Ph.D. Thesis (University of Hamburg, Hamburg 2002), in GermanGoogle Scholar
  294. 11.294.
    G. Aka, D. Vivien, V. Lupei: Site-selective 900 nm quasi-three-level laser emission in Nd-doped strontium lanthanum aluminate, Appl. Phys. Lett. 85(14), 2685 (2004)ADSCrossRefGoogle Scholar
  295. 11.295.
    F. Jia, Q. Xue, Q. Zheng, Y. Bu, L. Qian: 5.3 W deep-blue light generation by intra-cavity frequency doubling of Nd:GdVO_4, Appl. Phys. B 83(2), 245 (2006)ADSCrossRefGoogle Scholar
  296. 11.296.
    K. Mizuuchi, A. Morikawa, T. Sugita, K. Yamamoto, N. Pavel, T. Taira: Continuous-wave deep blue generation in a periodically poled MgO:LiNbO_3 crystal by single-pass frequency doubling of a 912 nm Nd:GdVO_4 laser, Jpn. J. Appl. Phys. 43(10A), L1293 (2004)ADSCrossRefGoogle Scholar
  297. 11.297.
    Y.D. Zavartsev, A.I. Zagumennyi, F. Zerrouk, S.A. Kutovoi, V.A. Mikhailov, V.V. Podreshetnikov, A.A. Sirotkin, I.A. Shcherbakov: Diode-pumped quasi-three-level 456 nm Nd:GdVO_4 laser, Quantum Electron. 33(7), 651 (2003)ADSCrossRefGoogle Scholar
  298. 11.298.
    C. Czeranowsky, M. Schmidt, E. Heumann, G. Huber, S. Kutovoi, Y. Zavartsev: Continuous wave diode pumped intracavity doubled Nd:GdVO4 laser with 840 mW output power at 456 nm, Opt. Commun. 205(4-6), 361 (2002)ADSCrossRefGoogle Scholar
  299. 11.299.
    Q.H. Xue, Q. Zheng, Y.K. Bu, F.Q. Jia, L.S. Qian: High-power efficient diode-pumped Nd:YVO_4/LiB_3O_5 457 nm blue laser with 4.6 W of output power, Opt. Lett. 31(8), 1070 (2006)ADSCrossRefGoogle Scholar
  300. 11.300.
    L. Zhang, C.Y. Zhang, Z.Y. Wei, C. Zhang, Y.B. Long, Z.G. Zhang, H.J. Zhang, J.Y. Wang: Compact diode-pumped continuous-wave Nd:LuVO_4 lasers operated at 916 nm and 458 nm, Chin. Phys. Lett. 23(5), 1192 (2006)ADSCrossRefGoogle Scholar
  301. 11.301.
    C.Y. Zhang, L. Zhang, Z.Y. Wei, C. Zhang, Y.B. Long, Z.G. Zhang, H.J. Zhang, J.Y. Wang: Diode-pumped continuous-wave Nd:LuVO_4 laser operating at 916  nm, Opt. Lett. 31(10), 1435 (2006)ADSCrossRefGoogle Scholar
  302. 11.302.
    J.H. Zarrabi, P. Gavrilovic, S. Singh: Intracavity, frequency-doubled, miniaturized Nd-YAlO_3 blue laser at 465 nm, Appl. Phys. Lett. 67(17), 2439 (1995)ADSCrossRefGoogle Scholar
  303. 11.303.
    N. Pavel, V. Lupei, J. Saikawa, T. Taira, H. Kan: Neodymium concentration dependence of 0.94, 1.06 and 1.34 μ m laser emission and of heating effects under 809 and 885 nm diode laser pumping of Nd:YAG, Appl. Phys. 82(4), 599 (2006)Google Scholar
  304. 11.304.
    H. Hara, B.M. Walsh, N.P. Barnes: Tunability of a 946 nm Nd:YAG microchip laser versus output mirror reflectivity and crystal length, Opt. Eng. 43(12), 3026 (2004)ADSCrossRefGoogle Scholar
  305. 11.305.
    J.L. He, H.M. Wang, S.D. Pan, J. Liu, H.X. Li, S.N. Zhu: Laser performance of Nd:YAG at 946 nm and frequency doubling with periodically poled LiTaO_3, J. Cryst. Growth 292(2), 337 (2006)ADSCrossRefGoogle Scholar
  306. 11.306.
    Y.H. Chen, W. Hou, H.B. Peng, A.C. Geng, Y. Zhou, D.F. Cui, Z.Y. Xu: Generation of 2.1 W continuous wave blue light by intracavity doubling of a diode-end-pumped Nd:YAG laser in a 30 mm LBO, Chin. Phys. Lett. 23(6), 1479 (2006)ADSCrossRefGoogle Scholar
  307. 11.307.
    R. Zhou, E.B. Li, H.F. Li, P. Wang, J.Q. Yao: Continuous-wave, 15.2 W diode-end-pumped Nd:YAG laser operating at 946 nm, Opt. Lett. 31(12), 1869 (2006)ADSCrossRefGoogle Scholar
  308. 11.308.
    Y. Lu, B.G. Zhang, E.B. Li, D.G. Xu, R. Zhou, X. Zhao, F. Ji, T.L. Zhang, P. Wang, J.Q. Yao: High-power simultaneous dual-wavelength emission of an end-pumped Nd:YAG laser using the quasi-three-level and the four-level transition, Opt. Commun. 262(2), 241 (2006)ADSCrossRefGoogle Scholar
  309. 11.309.
    Y. Chen, H. Peng, W. Hou, Q. Peng, A. Geng, L. Guo, D. Cui, Z. Xu: 3.8 W of cw blue light generated by intracavity frequency doubling of a 946 nm Nd:YAG laser with LBO, Appl. Phys. B 83(2), 241 (2006)ADSCrossRefGoogle Scholar
  310. 11.310.
    R. Zhou, T.L. Zhang, E.B. Li, X. Ding, Z.Q. Cai, B.G. Zhang, W.Q. Wen, P. Wang, J.Q. Yao: 8.3 W diode-end-pumped continuous-wave Nd:YAG laser operating at 946 nm, Opt. Express 13(25), 10115 (2005)ADSCrossRefGoogle Scholar
  311. 11.311.
    R. Zhou, Z.Q. Cai, W.Q. Wen, X. Ding, P. Wang, J.Q. Yao: High-power continuous-wave Nd:YAG laser at 946 nm and intracavity frequency-doubling with a compact three-element cavity, Opt. Commun. 255(4-6), 304 (2005)ADSCrossRefGoogle Scholar
  312. 11.312.
    C. Czeranowsky, E. Heumann, G. Huber: All-solid-state continuous-wave frequency-doubled Nd:YAG-BiBO laser with 2.8 W output power at 473 nm, Opt. Lett. 28(6), 432 (2003)ADSCrossRefGoogle Scholar
  313. 11.313.
    T. Kellner, F. Heine, G. Huber, S. Kück: Passive Q-switching of a diode-pumped 946 nm Nd:YAG laser with 1.6 W average output power, Appl. Opt. 37(30), 7076 (1998)ADSCrossRefGoogle Scholar
  314. 11.314.
    S.G.P. Strohmaier, H.J. Eichler, J.F. Bisson, H. Yagi, K. Takaichi, K. Ueda, T. Yanagitani, A.A. Kaminskii: Ceramic Nd:YAG laser at 946 nm, Laser Phys. Lett. 2(8), 383 (2005)ADSCrossRefGoogle Scholar
  315. 11.315.
    L. Fornasiero, E. Mix, V. Peters, E. Heumann, K. Petermann, G. Huber: Efficient laser operation of Nd:Sc_2O_3 at 966 nm, 1082 nm, and 1486 nm. In: Advanced Solid-State Lasers, ed. by M.M. Fejer, H. Injeyan, U. Keller (Opt. Soc. Am., Washington 1999) p. 249Google Scholar
  316. 11.316.
    L.F. Johnson, J.E. Geusic, L.G. Van Uitert: Coherent oscillations from Tm3+, Ho3+, Yb3+ and Er3+ ions in yttrium aluminum garnet, Appl. Phys. Lett. 7, 127 (1965)ADSCrossRefGoogle Scholar
  317. 11.317.
    P. Lacovara, H.K. Choi, C.A. Wang, R.L. Aggarwal, T.Y. Fan: Room-temperature diode-pumped Yb:YAG laser, Opt. Lett. 16, 1089 (1991)ADSCrossRefGoogle Scholar
  318. 11.318.
    K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, S.A. Basun: Rare-earth-doped sesquioxides, J. Lumin. 87-89, 973 (2000)CrossRefGoogle Scholar
  319. 11.319.
    A. Giesen, H. Huegel, A. Voss, K. Wittig, U. Brauch, H. Opower: Scalable concept for diode-pumped high-power solid-state lasers, Appl. Phys. B 58(5), 365 (1994)ADSCrossRefGoogle Scholar
  320. 11.320.
    C. Stewen, K. Contag, M. Larionov, A. Giesen, H. Huegel: A 1 kW CW thin disc laser, IEEE J. Sel. Top. Quantum Electron. 6(4), 650 (2000)CrossRefGoogle Scholar
  321. 11.321.
    K. Rademaker, E. Heumann, G. Huber, S.A. Payne, W.F. Krupke, L.I. Isaenko, A. Burger: Laser activity at 1.18, 1.07, and 0.97 μ m in the low-phonon-energy hosts KPb_2Br_5 and RbPb_2Br_5 doped with Nd3+, Opt. Lett. 30(7), 729 (2005)ADSCrossRefGoogle Scholar
  322. 11.322.
    S. Zhao, Q. Wang, X. Zhang, L. Sun, S. Zhang: Laser characteristics of a new crystal Nd:Sr_5(PO_4)_3F at 1.059 μ m, Opt. Laser Technol. 28(6), 477 (1996)ADSCrossRefGoogle Scholar
  323. 11.323.
    C. Grivas, T.C. May-Smith, D.P. Shepherd, R.W. Eason: On the growth and lasing characteristics of thick Nd:GGG waveguiding films fabricated by pulsed laser deposition, Appl. Phys. A 79(4-6), 1203 (2004)ADSGoogle Scholar
  324. 11.324.
    H.J. Zhang, X.L. Meng, L. Zhu, C.Q. Wang, R.P. Cheng, W.T. Yu, S.J. Zhang, L.K. Sun, Y.T. Chow, W.L. Zhang, H. Wang, K.S. Wong: Growth and laser properties of Nd:Ca_4YO(BO_3)_3 crystal, Opt. Commun. 160(4-6), 273 (1999)ADSCrossRefGoogle Scholar
  325. 11.325.
    A. Ikesue, Y.L. Aung: Synthesis and performance of advanced ceramic lasers, J. Am. Ceram. Soc. 89(6), 1936 (2006)CrossRefGoogle Scholar
  326. 11.326.
    M.L. Huang, Y.J. Chen, X.Y. Chen, Y.D. Huang, Z.D. Luo: Study on CW fundamental and self-frequency doubling laser of Nd3+:GdAl_3(BO_3)_4 crystal, Opt. Commun. 204(1-6), 333 (2002)ADSCrossRefGoogle Scholar
  327. 11.327.
    P. Dekker, Y.J. Huo, J.M. Dawes, J.A. Piper, P. Wang, B.S. Lu: Continuous wave and Q-switched diode-pumped neodymium, lutetium: Yttrium aluminium borate lasers, Opt. Commun. 151(4-6), 406 (1998)ADSCrossRefGoogle Scholar
  328. 11.328.
    N. Pavel, T. Taira: Continuous-wave high-power multi-pass pumped thin-disc Nd:GdVO_4 laser, Opt. Commun. 260(1), 271 (2006)ADSCrossRefGoogle Scholar
  329. 11.329.
    H.J. Zhang, J.Y. Wang, C.Q. Wang, L. Zhu, X.B. Hu, X.L. Meng, M.H. Jiang: A comparative study of crystal growth and laser properties of Nd:YVO_4, Nd:GdVO_4 and Nd:Gd_xLa_1-xVO_4 (x = 0.80, 0.60, 0.45) crystals, Opt. Mater. 23(1-2), 449 (2003)ADSCrossRefGoogle Scholar
  330. 11.330.
    C.Q. Wang, Y.T. Chow, L. Reekie, W.A. Gambling, H.J. Zhang, L. Zhu, X.L. Meng: A comparative study of the laser performance of diode-laser-pumped Nd:GdVO_4 and Nd:YVO_4 crystals, Appl. Phys. B 70(6), 769 (2000)ADSCrossRefGoogle Scholar
  331. 11.331.
    C.Q. Wang, H.J. Zhang, Y.T. Chow, J.H. Liu, L. Zhu, J.Y. Wang, X.L. Meng, W.A. Gambling: Spectroscopic and laser properties of Nd:Gd_0.8La_0.2VO_4 crystal, Opt. Laser Technol. 33(6), 439 (2001)ADSCrossRefGoogle Scholar
  332. 11.332.
    G. Lucas-Leclin, F. Auge, S.C. Auzanneau, F. Balembois, P. Georges, A. Brun, E. Mougel, G. Aka, D. Vivien: Diode-pumped self-frequency-doubling Nd:GdCa_4O(BO_3)_3 lasers: Toward green microchip lasers, J. Opt. Soc. Am. B 17(9), 1526 (2000)ADSCrossRefGoogle Scholar
  333. 11.333.
    D.A. Hammons, M. Richardson, B.H.T. Chai, A.K. Chin, R. Jollay: Scaling of longitudinally diode-pumped self-frequency-doubling Nd:YCOB lasers, IEEE J. Quantum Electron. 36(8), 991 (2000)ADSCrossRefGoogle Scholar
  334. 11.334.
    F. Mougel, F. Auge, G. Aka, A. Kahn-Harari, D. Vivien, F. Balembois, P. Georges, A. Brun: New green self-frequency-doubling diode-pumped Nd:Ca4GdO(BO3)3 laser, Appl. Phys. B 67(5), 533 (1998)ADSCrossRefGoogle Scholar
  335. 11.335.
    J.M. Eichenholz, D.A. Hammons, L. Shah, Q. Ye, R.E. Peale, M. Richardson, B.H.T. Chai: Diode-pumped self-frequency doubling in a Nd3+: YCa_4O(BO_3)_3 laser, Appl. Phys. Lett. 74(14), 1954 (1999)ADSCrossRefGoogle Scholar
  336. 11.336.
    Y.J. Chen, X.H. Gong, Y.F. Lin, Q.G. Tan, Z.D. Luo, Y.D. Huang: Passively Q-switched laser operation of Nd:LaB_3O_6 cleavage microchip, J. Appl. Phys. 99(10), 103101 (2006)ADSCrossRefGoogle Scholar
  337. 11.337.
    S.F. Wu, G.F. Wang, J.L. Xiea: Growth of high quality and large-sized Nd3+:YVO_4 single crystal, J. Cryst. Growth 266(4), 496 (2004)ADSCrossRefGoogle Scholar
  338. 11.338.
    V.G. Ostroumov, F. Heine, S. Kück, G. Huber, V.A. Mikhailov, I.A. Shcherbakov: Intracavity frequency-doubled diode-pumped Nd:LaSc_3(BO_3)_4 lasers, Appl. Phys. B 64(3), 301 (1997)ADSCrossRefGoogle Scholar
  339. 11.339.
    V. Lupei, N. Pavel, Y. Sato, T. Taira: Highly efficient 1063 nm continuous-wave laser emission in Nd:GdVO_4, Opt. Lett. 28(23), 2366 (2003)ADSCrossRefGoogle Scholar
  340. 11.340.
    Y. Bo, A.C. Geng, Y.F. Lu, X.D. Yang, Q.J. Peng, Q.J. Cui, D.F. Cui, Z.Y. Xu: A 4.8 W M 2 = 4.6 continuous-wave intracavity sum-frequency diode-pumped solid-state yellow laser, Chin. Phys. Lett. 23(6), 1494 (2006)ADSCrossRefGoogle Scholar
  341. 11.341.
    M. Gerber, T. Graf, A. Kudryashov: Generation of custom modes in a Nd:YAG laser with a semipassive bimorph adaptive mirror, Appl. Phys. B 83(1), 43 (2006)ADSCrossRefGoogle Scholar
  342. 11.342.
    G.J. Spühler, T. Südmeyer, R. Paschotta, M. Moser, K.J. Weingarten, U. Keller: Passively mode-locked high-power Nd:YAG lasers with multiple laser heads, Appl. Phys. B 71(1), 19 (2000)ADSCrossRefGoogle Scholar
  343. 11.343.
    J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J.F. Bisson, Y. Feng, A. Shirakawa, K.I. Ueda, T. Yanagitani, A.A. Kaminskii: 110 W ceramic Nd3+:Y_3Al_5O_12 laser, Appl. Phys. B 79(1), 25 (2004)ADSCrossRefGoogle Scholar
  344. 11.344.
    J.R. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, A.A. Kaminskii: Neodymium doped yttrium aluminum garnet (Y_3Al_5O_12) nanocrystalline ceramics – a new generation of solid state laser and optical materials, J. Alloys Compd. 341(1-2), 220 (2002)CrossRefGoogle Scholar
  345. 11.345.
    C.Y. Wang, J.H. Ji, Y.F. Qi, Q.H. Lou, X.L. Zhu, Y.T. Lu: Kilohertz electro-optic Q-switched Nd:YAG ceramic laser, Chin. Phys. Lett. 23(7), 1797 (2006)ADSCrossRefGoogle Scholar
  346. 11.346.
    D. Kracht, D. Freiburg, R. Wilhelm, M. Frede, C. Fallnich: Core-doped ceramic Nd:YAG laser, Opt. Express 14(7), 2690 (2006)ADSCrossRefGoogle Scholar
  347. 11.347.
    Y. Qi, X. Zhu, Q. Lou, J. Ji, J. Dong, Y. Wei: High optical-optical efficiency of 52.5 % obtained in high power Nd:YAG ceramic laser, Electron. Lett. 42(1), 30 (2006)CrossRefGoogle Scholar
  348. 11.348.
    Y.F. Qi, X.L. Zhu, Q.H. Lou, J.H. Ji, J.X. Dong, Y.R. Wei: Nd:YAG ceramic laser obtained high slope-efficiency of 62 % in high power applications, Opt. Express 13(22), 8725 (2005)ADSCrossRefGoogle Scholar
  349. 11.349.
    L. Guo, W. Hou, H.B. Zhang, Z.P. Sun, D.F. Cui, Z.Y. Xu, Y.G. Wang, X.Y. Ma: Diode-end-pumped passively mode-locked ceramic Nd:YAG Laser with a semiconductor saturable mirror, Opt. Express 13(11), 4085 (2005)ADSCrossRefGoogle Scholar
  350. 11.350.
    J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J.F. Bisson, Y. Feng, A. Shirakawa, K.I. Ueda, T. Yanagitani, A.A. Kaminskii: 110 W ceramic Nd3+:Y_3Al_5O_12 laser, Appl. Phys. B 79(1), 25 (2004)ADSCrossRefGoogle Scholar
  351. 11.351.
    J.R. Lu, K. Ueda, H. Yagi, T. Yanagitani, Y. Akiyama, A.A. Kaminskii: Neodymium doped yttrium aluminum garnet (Y_3Al_5O_12) nanocrystalline ceramics - a new generation of solid state laser and optical materials, J. Alloys Compd. 341(1-2), 220 (2002)CrossRefGoogle Scholar
  352. 11.352.
    J. Lu, M. Prabhu, K. Ueda, H. Yagi, T. Yanagitani, A. Kudryashov, A.A. Kaminskii: Potential of ceramic YAG lasers, Laser Phys. 11(10), 1053 (2001)Google Scholar
  353. 11.353.
    J.R. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A.A. Kaminskii, A. Kudryashov: 72 W Nd:Y_3Al_5O_12 ceramic laser, Appl. Phys. Lett. 78(23), 3586 (2001)ADSCrossRefGoogle Scholar
  354. 11.354.
    J.R. Lu, M. Prabhu, J.Q. Xu, K. Ueda, H. Yagi, T. Yanagitani, A.A. Kaminskii: Highly efficient 2 % Nd:yttrium aluminum garnet ceramic laser, Appl. Phys. Lett. 77(23), 3707 (2000)ADSCrossRefGoogle Scholar
  355. 11.355.
    I. Shoji, S. Kurimura, Y. Sato, T. Taira, A. Ikesue, K. Yoshida: Optical properties and laser characteristics of highly Nd3+-doped Y_3Al_5O_12 ceramics, Appl. Phys. Lett. 77(7), 939 (2000)ADSCrossRefGoogle Scholar
  356. 11.356.
    A. Ikesue, K. Yoshida, T. Yamamoto, I. Yamaga: Optical scattering centers in polycrystalline Nd:YAG laser, J. Am. Ceram. Soc 80(6), 1517 (1997)CrossRefGoogle Scholar
  357. 11.357.
    Y.K. Bu, Q. Zheng, Q.H. Xue, Y.X. Cheng, L.S. Qian: Diode-pumped 593.5 nm CW yellow laser by type-1 CPM LBO intracavity sum-frequency-mixing, Opt. Laser Technol. 38(8), 565 (2006)ADSCrossRefGoogle Scholar
  358. 11.358.
    T.K. Lake, A.J. Kemp, G.J. Friel, B.D. Sinclair: Compact and efficient single-frequency Nd:YVO_4 laser with variable longitudinal-mode discrimination, IEEE Photonics Technol. Lett. 17(2), 417 (2005)ADSCrossRefGoogle Scholar
  359. 11.359.
    J. Liu, J.M. Yang, J.L. He: High repetition rate passively Q-switched diode-pumped Nd:YVO_4 laser, Opt. Laser Technol. 35(6), 431 (2003)ADSCrossRefGoogle Scholar
  360. 11.360.
    J.C. Bermudez, A.V. Kirʼyanov, V.J. Pinto-Robledo, M.J. Damzen: The influence of thermally induced effects on operation of a compact diode-side-pumped Nd:YVO_4 laser, Laser Phys. 13(2), 255 (2003)Google Scholar
  361. 11.361.
    A.S.S. de Camargo, L.A.O. Nunes, D.R. Ardila, J.P. Andreeta: Excited-state absorption and 1064-nm end-pumped laser emission of Nd:YVO_4 single-crystal fiber grown by laser-heated pedestal growth, Opt. Lett. 29(1), 59 (2004)ADSCrossRefGoogle Scholar
  362. 11.362.
    Y.M. Wang, M. Lei, J.L. Li, F.M. Zeng, L.J. Zhang, J.H. Liu: Crystal growth and laser characteristics of Nd3+:KGd(WO_4)_2, J. Rare Earths 23(6), 676 (2005)Google Scholar
  363. 11.363.
    H.K. Kong, J.Y. Wang, H.J. Zhang, J.H. Liu, Y.T. Lin, X.F. Cheng, X.B. Hu, X.G. Xu, Z.S. Shao, M.H. Jiang: Growth and laser properties of Nd3+ doped La_3Ga_5.5Ta_0.5O_14 crystal, J. Cryst. Growth 263(1-4), 344 (2004)ADSCrossRefGoogle Scholar
  364. 11.364.
    A.A. Kaminskii, S.N. Bagayev, K. Ueda, K. Takaichi, H. Yagi, T. Yanagitani: 5.5 J pyrotechnically pumped Nd3+:Y_3Al_5O_12 cermaic laser, Laser Phys. Lett. 3(3), 124 (2006)ADSCrossRefGoogle Scholar
  365. 11.365.
    J.H. Liu, H.J. Zhang, Z.P. Wang, J.Y. Wang, Z.S. Shao, M.H. Jiang, H. Weber: Continuous-wave and pulsed laser performance of Nd:LuVO_4 crystal, Opt. Lett. 29(2), 168 (2004)ADSCrossRefGoogle Scholar
  366. 11.366.
    J.Y. Wang, H.J. Zhang, Z.P. Wang, W.W. Ge, J.X. Zhang, M.H. Jiang: Growth, properties and Raman shift laser in tungstate crystals, J. Cryst. Growth 292(2), 377 (2006)ADSCrossRefGoogle Scholar
  367. 11.367.
    G.A. Kumar, J.R. Lu, A.A. Kaminskii, K.I. Ueda, H. Yagi, T. Yanagitani: Spectroscopic and stimulated emission characteristics of Nd3+ in transparent Y_2O_3 ceramics, IEEE J. Quantum Electron. 42(7-8), 643 (2006)ADSCrossRefGoogle Scholar
  368. 11.368.
    J. Lu, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, A.A. Kaminskii: Promising ceramic laser material: Highly transparent Nd3+:Lu_2O_3 ceramic, Appl. Phys. Lett. 81(23), 4324 (2002)ADSCrossRefGoogle Scholar
  369. 11.369.
    M. Boucher, O. Musset, J.P. Boquillon, E. Georgiou: Multiwatt CW diode end-pumped Nd:YAP laser at 1.08 and 1.34 μ m: Influence of Nd doping level, Opt. Commun. 212(1-3), 139 (2002)ADSCrossRefGoogle Scholar
  370. 11.370.
    H.B. Peng, W. Hou, Y.H. Chen, D.F. Cui, Z.Y. Xu, C. Chen, F.D. Fan, Y. Zhu: 28W red light output at 659.5 nm by intracavity frequency doubling of a Nd:YAG laser using LBO, Opt. Express 14(9), 3961 (2006)ADSCrossRefGoogle Scholar
  371. 11.371.
    J.H. Lu, J.R. Lu, T. Murai, K. Takaichi, T. Uematsu, J.Q. Xu, K. Ueda, H. Yagi, T. Yanagitani, A.A. Kaminskii: 36-W diode-pumped continuous-wave 1319 nm Nd:YAG ceramic laser, Opt. Lett. 27(13), 1120 (2002)ADSCrossRefGoogle Scholar
  372. 11.372.
    F. Balembois, D. Boutard, E. Barnasson, M. Baudrier, R. Paries, C. Schwach, S. Forget: Efficient diode-pumped intracavity frequency-doubled CW Nd:YLF laser emitting in the red, Opt. Laser Technol. 38(8), 626 (2006)ADSCrossRefGoogle Scholar
  373. 11.373.
    S.Z. Zhao, Q.P. Wang, X.Y. Zhang, S.T. Wang, L. Zhao, L.K. Sun, S.J. Zhang: Diode-laser-pumped 1.328 μ m Nd:Sr_5(PO_4)_3F laser and its intracavity frequency doubling, Appl. Opt. 36(30), 7756 (1997)ADSCrossRefGoogle Scholar
  374. 11.374.
    J. Šulc, H. Jelínková, K. Nejezchleb, V. Škoda: YAG/V:YAG microchip laser operating at 1338 nm, Laser Phys. Lett. 2(11), 519 (2005)ADSCrossRefGoogle Scholar
  375. 11.375.
    C.Q. Wang, N. Hamelin, Y.T. Chow, X.L. Meng, Z.S. Shao: Low-threshold, high-efficiency, linearly polarized 1.338 μ m Nd:S-VAP laser and its frequency doubling, J. Mod. Opt. 45(10), 2139 (1998)ADSGoogle Scholar
  376. 11.376.
    N. Pavel, V. Lupei, T. Taira: 1.34 μ m efficient laser emission in highly-doped Nd:YAG under 885 nm diode pumping, Opt. Express 13(20), 7948 (2005)ADSCrossRefGoogle Scholar
  377. 11.377.
    C. Du, S. Ruan, H. Zhang, Y. Yu, F. Zeng, J. Wang, M. Jiang: A 13.3-W laser-diode-array end-pumped Nd:GdVO_4 continuous-wave laser at 1.34 μ m, Appl. Phys. B 80(1), 45 (2005)ADSCrossRefGoogle Scholar
  378. 11.378.
    L.J. Qin, X.L. Meng, J.G. Zhang, C.L. Du, L. Zhu, B.C. Xu: Growth and properties of Nd:GdVO_4 crystal, Opt. Mater. 23(1-2), 455 (2003)ADSCrossRefGoogle Scholar
  379. 11.379.
    J. Liu, B. Ozygus, J. Erhard, A. Ding, H. Weber, X. Meng: Diode-pumped CW and Q-switched Nd:GdVO_4 laser operating at 1.34 μ m, Opt. Quantum Electron. 35(8), 811 (2003)CrossRefGoogle Scholar
  380. 11.380.
    H.J. Zhang, C.L. Du, J.Y. Wang, X.B. Hu, X.A. Xu, C.M. Dong, J.H. Liu, H.K. Kong, H.D. Jiang, R.J. Han, Z.S. Shao, M.H. Jiang: Laser performance of Nd:GdVO_4 crystal at 1.34 μ m and intracavity double red laser, J. Cryst. Growth 249(3-4), 492 (2003)ADSCrossRefGoogle Scholar
  381. 11.381.
    C.L. Du, L.J. Qin, X.L. Meng, G.B. Xu, Z.P. Wang, X.G. Xu, L. Zhu, B.C. Xu, Z.S. Shao: High-power Nd:GdVO_4 laser at 1.34 μ m end-pumped by laser-diode-array, Opt. Commun. 212(1-3), 177 (2002)ADSCrossRefGoogle Scholar
  382. 11.382.
    H.J. Zhang, J.H. Liu, J.Y. Wang, X.G. Xu, M.H. Jiang: Continuous-wave laser performance of Nd:LuVO_4 crystal operating at 1.34 μ m, Appl. Opt. 44(34), 7439–7441 (2005)ADSCrossRefGoogle Scholar
  383. 11.383.
    H.Y. Shen, G. Zhang, C.H. Huang, R.R. Zeng, M. Wei: High power 1341.4 nm Nd:YAlO_3 CW laser and its performances, Opt. Laser Technol. 35(2), 69 (2003)ADSCrossRefGoogle Scholar
  384. 11.384.
    G. Zhang, H.Y. Shen, R.R. Zeng, C.H. Huang, W.X. Lin, J.H. Huang: The study of 1341.4 nm Nd:YAlO_3 laser intracavity frequency doubling by LiB_3O_5, Opt. Commun. 183(5-6), 461 (2000)ADSCrossRefGoogle Scholar
  385. 11.385.
    Y.P. Zhang, Y. Zheng, H.Y. Zhang, J.Q. Yao: A laser-diode-pumped 7.36 W continuous-wave Nd:YVO4 laser at 1342  nm, Chin. Phys. Lett. 23(2), 363 (2006)ADSCrossRefGoogle Scholar
  386. 11.386.
    R. Zhou, X. Ding, W.Q. Wen, X.Q. Cai, P. Wang, J.Q. Yao: High-power continuous-wave diode-end-pumped intracavity frequency doubled Nd:YVO_4 laser at 671 nm with a compact three-element cavity, Chin. Phys. Lett. 23(4), 849 (2006)ADSCrossRefGoogle Scholar
  387. 11.387.
    R. Zhou, E.B. Li, B.G. Zhang, X. Ding, Z.Q. Cai, W.Q. Wen, P. Wang, J.Q. Yao: Simultaneous dual-wavelength CW operation using 4 F 3/2–4 I 13/2 transitions in Nd:YVO_4 crystal, Opt. Commun. 260(2), 641 (2006)ADSCrossRefGoogle Scholar
  388. 11.388.
    Y.P. Zhang, Y. Zheng, H.Y. Zhang, J.Q. Yao: A laser-diode-pumped 7.36 W continuous-wave Nd:YVO_4 laser at 1342 nm, Chin. Phys. Lett. 23(2), 363 (2006)ADSCrossRefGoogle Scholar
  389. 11.389.
    H. Ogilvy, M.J. Withford, P. Dekker, J.A. Piper: Efficient diode double-end-pumped Nd:YVO_4 laser operating at 1342 nm, Opt. Express 11(19), 2411 (2003)ADSCrossRefGoogle Scholar
  390. 11.390.
    A. Di Lieto, P. Minguzzi, A. Pirastu, V. Magni: High-power diffraction-limited Nd:YVO_4 continuous-wave lasers at 1.34 μ m, IEEE J. Quantum Electron. 39(7), 903 (2003)ADSCrossRefGoogle Scholar
  391. 11.391.
    A. Di Lieto, P. Minguzzi, A. Pirastu, S. Sanguinetti, V. Magni: A 7 W diode-pumped Nd:YVO_4 CW laser at 1.34 μ m, Appl. Phys. B 75(4-5), 463 (2002)ADSCrossRefGoogle Scholar
  392. 11.392.
    J.L. He, G.Z. Luo, H.T. Wang, S.N. Zhu, Y.Y. Zhu, Y.B. Chen, N.B. Ming: Generation of 840 mW of red light by frequency doubling a diode-pumped 1342 nm Nd:YVO_4 laser with periodically-poled LiTaO_3, Appl. Phys. B 74(6), 537 (2002)ADSCrossRefGoogle Scholar
  393. 11.393.
    A. Sennaroglu: Efficient continuous-wave operation of a diode-pumped Nd:YVO_4 laser at 1342 nm, Opt. Commun. 164(4-6), 191 (1999)ADSCrossRefGoogle Scholar
  394. 11.394.
    S.A. Zolotovskaya, V.G. Savitski, M.S. Gaponenko, A.M. Malyarevich, K.V. Yumashev, M.I. Demchuk, H. Raaben, A.A. Zhilin, K. Nejezchleb: KGd(WO_4)_2 laser at 1.35 μ m passively Q-switched with V3+:YAG crystal and PbS-doped glass, Opt. Mater. 28(8-9), 919 (2006)ADSCrossRefGoogle Scholar
  395. 11.395.
    A.S. Grabtchikov, A.N. Kuzmin, V.A. Lisinetskii, V.A. Orlovich, A.A. Demidovich, K.V. Yumashev, N.V. Kuleshov, H.J. Eichler, M.B. Danailov: Passively Q-switched 1.35 μ m diode pumped Nd:KGW laser with V:YAG saturable absorber, Opt. Mater. 16(3), 349 (2001)ADSCrossRefGoogle Scholar
  396. 11.396.
    R. Zhou, B.G. Zhang, X. Ding, Z.Q. Cai, W.Q. Wen, P. Wang, J.Q. Yao: Continuous-wave operation at 1386 nm in a diode-end-pumped Nd:YVO_4 laser, Opt. Express 13(15), 5818 (2005)ADSCrossRefGoogle Scholar
  397. 11.397.
    H.M. Kretschmann, F. Heine, V.G. Ostroumov, G. Huber: High-power diode-pumped continuous-wave Nd3+ lasers at wavelengths near 1.44 μ m, Opt. Lett. 22, 466 (1997)ADSCrossRefGoogle Scholar
  398. 11.398.
    M.J.F. Digonnet (Ed.): Rare-Earth-Doped Fiber Lasers and Amplifiers, 2nd edn. (Marcel Dekker, New York 2001)Google Scholar
  399. 11.399.
    B.J. Ainslie, S.P. Craig, S.T. Davey: The absorption and fluorescence spectra of rare earth ions in silica-based monomode fiber, J. Lightwave Technol. 6, 287 (1988)ADSCrossRefGoogle Scholar
  400. 11.400.
    S.D. Jackson, T.A. King: CW operation of a 1.064 μ m pumped Tm-Ho-doped silica fiber laser, IEEE. J. Quantum Electron. 34, 1578 (1998)ADSCrossRefGoogle Scholar
  401. 11.401.
    O. Humbach, H. Fabian, U. Grzesik, U. Haken, W. Heitmann: Analysis of OH absorption bands in synthetic silica, J. Non-Cryst. Solids 203, 19 (1996)ADSCrossRefGoogle Scholar
  402. 11.402.
    D.C. Tran, G.H. Sigel Jr., B. Bendow: Heavy metal fluoride glasses and fibers: A review, J. Lightwave Technol. 2, 566 (1984)ADSCrossRefGoogle Scholar
  403. 11.403.
    P.W. France, M.G. Drexhage, J.M. Parker, M.W. Moore, S.F. Carter, J.V. Wright: Fluoride Glass Optical Fibers (Blackie, Glasgow, London 1990)CrossRefGoogle Scholar
  404. 11.404.
    S.T. Davey, P.W. France: Rare earth doped fluorozirconate glasses for fiber devices, BT J. Technol. 7, 58 (1989)Google Scholar
  405. 11.405.
    M. Monerie, F. Alard, G. Maze: Fabrication and characterisation of fluoride-glass single-mode fibers, Electron. Lett. 21, 1179 (1985)ADSCrossRefGoogle Scholar
  406. 11.406.
    L. Wetenkamp, G.F. West, H. Többen: Optical properties of rare earth-doped ZBLAN glasses, J. Non-Cryst. Solids 140, 35 (1992)ADSCrossRefGoogle Scholar
  407. 11.407.
    L. Wetenkamp: Charakterisierung von laseraktiv dotierten Schwermetallfluorid-Gläsern und Faserlasern. Ph.D. Thesis (Technical University of Braunschweig, Braunschweig 1991), in GermanGoogle Scholar
  408. 11.408.
    R. Reisfeld, M. Eyal: Possible ways of relaxations for excited states of rare earth ions in amorphous media, J. Phys. 46, C349 (1985)Google Scholar
  409. 11.409.
    D.C. Brown, H.J. Hoffman: Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers, IEEE J. Quantum Electron. 37, 207 (2001)ADSCrossRefGoogle Scholar
  410. 11.410.
    S.M. Lima, T. Catunda, R. Lebullenger, A.C. Hernandes, M.L. Baesso, A.C. Bento, L.C.M. Miranda: Temperature dependence of thermo-optical properties of fluoride glasses determined by thermal lens spectrometry, Phys. Rev. B 60, 15173 (1999)ADSCrossRefGoogle Scholar
  411. 11.411.
    T. Schweizer: Rare-earth-doped gallium lanthanum sulphide glasses for mid-infrared fiber lasers. Ph.D. Thesis (University of Hamburg, Hamburg 1998)Google Scholar
  412. 11.412.
    S.M. Lima, T. Catunda, M.L. Baesso, L.D. Vila, Y. Messaddeq, E.B. Stucchi, S.J.L. Ribeiro: Thermal-optical properties of Ga:La:S glasses measured by thermal lens technique, J. Non-Cryst. Solids 247, 222 (1999)ADSCrossRefGoogle Scholar
  413. 11.413.
    P.N. Kumta, S.H. Risbud: Rare-earth chalcogenides – an emerging class of optical materials, J. Mater. Sci. 29, 1135 (1994)ADSCrossRefGoogle Scholar
  414. 11.414.
    J.S. Sanghera, J. Heo, J.D. Mackenzie: Chalcohalide glasses, J. Non-Cryst. Solids 103, 155 (1988)ADSCrossRefGoogle Scholar
  415. 11.415.
    L.B. Shaw, B. Cole, P.A. Thielen, J.S. Sanghera, I.D. Aggarwal: Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber, IEEE. J. Quantum Electron. 48, 1127 (2001)ADSCrossRefGoogle Scholar
  416. 11.416.
    Y.D. West, T. Schweizer, D.J. Brady, D.W. Hewak: Gallium lanthanum sulphide fibers for infrared transmission, Fiber Integr. Opt. 19, 229 (2000)ADSCrossRefGoogle Scholar
  417. 11.417.
    J. Heo, Y.B. Shin: Absorption and mid-infrared emission spectroscopy of Dy3+ in Ge-As (or Ga)-S glasses, J. Non-Cryst. Solids 196, 162 (1996)ADSCrossRefGoogle Scholar
  418. 11.418.
    H. Po, J.D. Cao, B.M. Laliberte, R.A. Minns, R.F. Robinson, B.H. Rockney, R.R. Tricca, Y.H. Zhang: High power neodymium-doped single transverse mode fiber laser, Electron. Lett. 29, 1500 (1993)CrossRefGoogle Scholar
  419. 11.419.
    I.N. Duling III, W.K. Burns, L. Goldberg: High-power superfluorescent fiber source, Opt. Lett. 15, 33 (1990)ADSCrossRefGoogle Scholar
  420. 11.420.
    J.D. Minelly, W.L. Barnes, R.I. Laming, P.R. Morkel, J.E. Townsend, S.G. Grubb, D.N. Payne: Diode-array pumping of Er3+/Yb3+ co-doped fiber lasers and amplifiers, IEEE Photonics Technol. Lett. 5, 301 (1993)ADSCrossRefGoogle Scholar
  421. 11.421.
    H.M. Pask, J.L. Archambault, D.C. Hanna, L. Reekie, P.S.J. Russell, J.E. Townsend, A.C. Tropper: Operation of cladding-pumped Yb3+-doped silica fiber lasers in 1 μ m region, Electron. Lett. 30, 863 (1994)ADSCrossRefGoogle Scholar
  422. 11.422.
    J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, R. Iliew, F. Lederer, J. Broeng, G. Vienne, A. Petersson, C. Jakobsen: High-power air-clad large-mode-area photonic crystal fiber laser, Opt. Express 11, 818 (2003)ADSCrossRefGoogle Scholar
  423. 11.423.
    M.H. Muendel: Optimal inner cladding shapes for double-clad fiber lasers. In: Conf. Lasers Electroopt., OSA Technical Digest, Vol. 9 (Opt. Soc. Am., Washington 1996) p. 209Google Scholar
  424. 11.424.
    A. Liu, K. Ueda: The absorption characteristics of circular, offset, and rectangular double-clad fibers, Opt. Commun. 132, 511 (1996)ADSCrossRefGoogle Scholar
  425. 11.425.
    K. Furusawa, A. Malinowski, J.H.V. Price, T.M. Monro, J.K. Sahu, J. Nilsson, D.J. Richardson: Cladding pumped ytterbium-doped fiber laser with holey inner and outer cladding, Opt. Express 9, 714 (2001)ADSCrossRefGoogle Scholar
  426. 11.426.
    M.D. Nielsen, J.R. Folkenberg, N.A. Mortensen: Singlemode photonic crystal fiber with effective area of 600 μ m2 and low bending loss, Electron. Lett. 39, 1802 (2003)CrossRefGoogle Scholar
  427. 11.427.
    M. Musha, J. Miura, K. Nakagawa, K. Ueda: Developments of a fiber-MOPA system for the light source of the gravitational wave antenna, Class. Quantum Gravity 23(8), S287 (2006)ADSCrossRefGoogle Scholar
  428. 11.428.
    I.A. Bufetov, M.M. Bubnov, M.A. Melkumov, V.V. Dudin, A.V. Shubin, S.L. Semenov, K.S. Kravtsov, A.N. Gurʼyanov, M.V. Yashkov, E.M. Dianov: Yb-, Er-Yb- and Nd-doped fiber lasers based on multi-element first cladding fibers, Quantum Electron. 35(4), 328 (2005)ADSCrossRefGoogle Scholar
  429. 11.429.
    L. Lombard, A. Brignon, J.P. Huignard, E. Lallier, G. Lucas-Leclin, P. Georges, G. Pauliat, G. Roosen: High power multimode fiber amplifier with wavefront reshaping for high beam quality recovery, C. r. Phys. 7(2), 233 (2006)ADSCrossRefGoogle Scholar
  430. 11.430.
    J. Kim, P. Dupriez, C. Codemard, J. Nilsson, J.K. Sahu: Suppression of stimulated Raman scattering in a high power Yb-doped fiber amplifier using a W-type core with fundamental mode cut-off, Opt. Express 14(12), 5103 (2006)ADSCrossRefGoogle Scholar
  431. 11.431.
    P. Wang, L.J. Cooper, J.K. Sahu, W.A. Clarkson: Efficient single-mode operation of a cladding- pumped ytterbium-doped helical-core fiber laser, Opt. Lett. 31(2), 226 (2006)ADSCrossRefGoogle Scholar
  432. 11.432.
    H. Ohashi, X. Gao, M. Saito, H. Okamoto, M. Takasaka, K. Shinoda: Beam-shaping technique for end-pumping Yb-doped fiber laser with two laser-diode arrays, Jpn. J. Appl. Phys. Part 2 – Lett. Express Lett. 44(16-19), L555 (2005)Google Scholar
  433. 11.433.
    V. Dominic, S. MacCormack, R. Waarts, S. Sanders, S. Bicknese, R. Dohle, E. Wolak, P.S. Yeh, E. Zucker: 110 W fiber laser, Electron. Lett. 35(14), 1158 (1999)CrossRefGoogle Scholar
  434. 11.434.
    J. Limpert, A. Liem, S. Höfer, H. Zellmer, A. Tünnermann, S. Unger, S. Jetschke, H.-R. Müller: 150 W Nd/Yb codoped fiber laser at 1.1 μ m, Conf. Lasers Electroopt. (Opt. Soc. Am., Washington 2002) pp. 590–591Google Scholar
  435. 11.435.
    C.H. Liu, B. Ehlers, F. Doerfel, S. Heinemann, A. Carter, K. Tankala, J. Farroni, A. Galvanauskas: 810 W continuous-wave and singletransverse-mode fiber laser using 201 μ m core Yb-doped double-clad fiber, Electron. Lett. 40(23), 1471 (2004)CrossRefGoogle Scholar
  436. 11.436.
    Y. Jeong, J.K. Sahu, R.B. Williams, D.J. Richardson, K. Furusawa, J. Nilsson: Ytterbium-doped large-core fiber laser with 272 W output power, Electron. Lett. 39(13), 977 (2003)CrossRefGoogle Scholar
  437. 11.437.
    P. Dupriez, A. Piper, A. Malinowski, J.K. Sahu, M. Ibsen, B.C. Thomsen, Y. Jeong, L.M.B. Hickey, M.N. Zervas, J. Nilsson, D.J. Richardson: High average power, high repetition ratepicosecond pulsed fiber master oscillator power amplifier source seeded by a gain-switched laser diode at 1060 nm, IEEE Photonics Technol. Lett. 18(9-12), 1013 (2006)ADSCrossRefGoogle Scholar
  438. 11.438.
    L.J. Cooper, P. Wang, R.B. Williams, J.K. Salm, W.A. Clarkson, A.M. Scott, D. Jones: High-power Yb-doped multicore ribbon fiber laser, Opt. Lett. 30(21), 2906 (2005)ADSCrossRefGoogle Scholar
  439. 11.439.
    A.P. Liu, M.A. Norsen, R.D. Mead: 60 W green output by frequency doubling of a polarized Yb-doped fiber laser, Opt. Lett. 30(1), 67 (2005)ADSCrossRefGoogle Scholar
  440. 11.440.
    Y. Jeong, J.K. Sahu, D.N. Payne, J. Nilsson: Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power, Opt. Express 12, 6088 (2004)ADSCrossRefGoogle Scholar
  441. 11.441.
    J. Limpert, S. Hoefer, A. Liem, H. Zellmer, A. Tuennermann, S. Knoke, H. Voelckel: 100 W average-power, high-energy nanosecond fiber amplifier, Appl. Phys. B 75, 477–479 (2002)ADSCrossRefGoogle Scholar
  442. 11.442.
    K. Petermann, D. Fagundes-Peters, J. Johannsen, M. Mond, V. Peeters, J.J. Romero, S. Kutovoi, J. Speiser, A. Giesen: Highly Yb-doped oxides for thin-disc lasers, J. Cryst. Growth 275, 135 (2005)ADSCrossRefGoogle Scholar
  443. 11.443.
    L.D. DeLoach, S.A. Payne, L.L. Chase, L.K. Smith, W.L. Kway, W.F. Krupke: Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications, IEEE J. Quantum Electron. 29, 1179 (1993)ADSCrossRefGoogle Scholar
  444. 11.444.
    D.S. Sumida, T.Y. Fan, R. Hutcheson: Spectroscopy and diode-pumped lasing of Yb3+-doped Lu_3Al_5O_12 (Yb:LuAG). In: OSA Proc. Adv. Solid-State Lasers, Vol. 24, ed. by B.H.T. Chai, S.A. Payne (Opt. Soc. Am., Washington 1995) p. 348Google Scholar
  445. 11.445.
    D.S. Sumida, T.Y. Fan: Effect of radiation trapping on fluorescence lifetime and emission cross-section measurements in solid-state laser media, Opt. Lett. 19, 1343 (1994)ADSCrossRefGoogle Scholar
  446. 11.446.
    I. Sokólska, E. Heumann, S. Kück: Laser oscillation of Er3+:YVO_4 crystals in the spectral range around 1.6 μ m, Appl. Phys. B 71, 893 (2000)ADSCrossRefGoogle Scholar
  447. 11.447.
    S.A. Payne, L.L. Chase, L.-K. Smith, L. Kway, W.F. Krupke: Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+, IEEE J. Quantum Electron. 28, 2619 (1992), and references thereinADSCrossRefGoogle Scholar
  448. 11.448.
    E.H. Bernhardi, H. van Wolferen, K. Worhoff, R.M. de Ridder, M. Pollnau: Highly efficient, low-threshold monolithic distributed-Bragg-reflector channel waveguide laser in Al2O3:Yb3+, Opt. Lett. 36, 603–605 (2011)ADSCrossRefGoogle Scholar
  449. 11.449.
    K.I. Schaffers, L.D. DeLoach, S.A. Payne: Crystal growth, frequency doubling, and infrared laser performance of Yb3+:BaCaBO_3F, IEEE J. Quantum Electron. 32, 741 (1996)ADSCrossRefGoogle Scholar
  450. 11.450.
    G. Galzerano, N. Coluccelli, D. Gatti, A. Di Lieto, M. Tonelli, P. Laporta: CW and femtosecond operation of a diode-pumped Yb:BaY2F8 laser, Opt. Express 18, 6255–6261 (2010)ADSCrossRefGoogle Scholar
  451. 11.451.
    S. Ricaud, D.N. Papadopoulos, A. Pellegrina, F. Balembois, P. Georges, A. Courjaud, P. Camy, J.L. Doualan, R. Moncorge, F. Druon: High-power diode-pumped cryogenically cooled Yb:CaF2 laser with extremely low quantum defect, Opt. Lett. 36, 1602–1604 (2011)ADSCrossRefGoogle Scholar
  452. 11.452.
    J. Du, X.Y. Liang, Y.G. Wang, L.B. Su, W.W. Feng, E.W. Dai, Z.Z. Xu, J. Xu: 1 ps passively mode-locked laser operation of Na,Yb:CaF_2 crystal, Opt. Express 13, 7970 (2005)ADSCrossRefGoogle Scholar
  453. 11.453.
    M. Robinson, C.K. Asawa: Stimulated emission from Nd3+ and Yb3+ in noncubic sites of neodymium- and ytterbium-doped CaF_2, J. App. Phys. 38, 4495 (1967)ADSCrossRefGoogle Scholar
  454. 11.454.
    V. Petit, J.L. Camy, R. Moncorge: CW and tunable laser operation of Yb3+ in Nd:Yb:CaF_2, Appl. Phys. Lett. 88(5), 051111 (2006)ADSCrossRefGoogle Scholar
  455. 11.455.
    H.J. Zhang, X.L. Meng, P. Wang, L. Zhu, X.S. Liu, X.M. Liu, Y.Y. Yang, R.H. Wang, J. Dawes, J. Piper, S.J. Zhang, L. Sun: Growth of Yb-doped Ca_4GdO(BO_3)_3 crystals and their spectra and laser properties, J. Cryst. Growth 222, 209 (2001)ADSCrossRefGoogle Scholar
  456. 11.456.
    J.E. Hellstrom, V. Pasiskevicius, F. Laurell, B. Denker, B. Galagan, L. Ivleva, S. Sverchkov, I. Voronina, V. Horvath: Laser performance of Yb:GdCa4O(BO3)3 compared to Yb:KGd(WO4)2 under diode-bar pumping, Laser Phys. 17, 1204–1208 (2007)ADSCrossRefGoogle Scholar
  457. 11.457.
    F. Mougel, K. Dardenne, G. Aka, A. Kahn-Harari, D. Vivien: An efficient infrared laser and self-frequency doubling crystal, J. Opt. Soc. Am. B 16, 164 (1999)ADSCrossRefGoogle Scholar
  458. 11.458.
    F. Auge, F. Balembois, P. Georges, A. Brun, F. Mougel, G. Aka, A. Kahn-Harari, D. Vivien: Efficient and tunable continuous-wave diode-pumped Yb3+:Ca_4GdO(BO_3)_3 laser, Appl. Opt. 38, 976 (1999)ADSCrossRefGoogle Scholar
  459. 11.459.
    F. Auge, F. Druon, F. Balembois, P. Georges, A. Brun, F. Mougel, G. Aka, D. Vivien: Theoretical and experimental investigations of a diode-pumped quasi-three-level laser: The Yb3+-doped Ca_4GdO(BO_3)_3 (Yb:GdCOB) laser, IEEE J. Quantum Electron. 36, 598 (2000)ADSCrossRefGoogle Scholar
  460. 11.460.
    Y. Cheng, X.D. Xu, J. Xu, C.C. Zhao, X.B. Yang, X.Y. Liang, S.M. Zhou: Spectroscopic, thermal, and laser properties of Yb:CaNb2O6 crystal, IEEE J. Quantum Electron. 45, 1571–1576 (2009)ADSCrossRefGoogle Scholar
  461. 11.461.
    H. Yang, Z.W. Zhao, J. Zhang, P.Z. Deng, J. Xu, Z.Y. Wei, J. Zhang: Continuous-wave laser oscillation of Yb:FAP crystals at a wavelength of 1043 nm, Chin. Phys. 10, 1136 (2001)ADSCrossRefGoogle Scholar
  462. 11.462.
    S.A. Payne, L.K. Smith, L.D. DeLoach, W.L. Kway, J.B. Tassano, W.F. Krupke: Laser optical and thermomechanical properties of Yb-doped fluoroapatite, IEEE J. Quantum Electron. 30, 170 (1994)ADSCrossRefGoogle Scholar
  463. 11.463.
    S.A. Payne, L.K. Smith, L.D. DeLoach, W.L. Kway, J.B. Tassano, W.F. Krupke, B.H.T. Chai, G. Loutts: Ytterbium-doped apatite-structure crystals: A new class of laser materials, J. Appl. Phys. 75, 497 (1994)ADSCrossRefGoogle Scholar
  464. 11.464.
    W.D. Tan, D.Y. Tang, X.D. Xu, D.Z. Li, J. Zhang, C.W. Xu, Z.H. Cong, J. Xu: Room temperature diode-pumped Yb:CaYAIO4 laser with near quantum limit slope efficiency, Laser Phys. Lett. 8, 193–196 (2011)ADSCrossRefGoogle Scholar
  465. 11.465.
    A. Brenier, C.Y. Tu, Y. Wang, Z.Y. You, Z.J. Zhu, J.F. Li: Diode-pumped laser operation of Yb3+-doped Y2Ca3B4O12 crystal, J. Appl. Phys. 104, 013102 (2008)ADSCrossRefGoogle Scholar
  466. 11.466.
    L. Shah, Q. Ye, J.M. Eichenholz, D.A. Hammons, M. Richardson, B.H.T. Chai, R.E. Peale: Laser tunability in Yb3+:YCa_4O(BO_3)_3 {Yb:YCOB}, Opt. Commun. 167, 149 (1999)ADSCrossRefGoogle Scholar
  467. 11.467.
    H.J. Zhang, X.L. Meng, L. Zhu, P. Wang, X.S. Liu, J. Dawes, P. Dekker, R.P. Cheng, S.J. Zhang, L.K. Sun: Growth, Stark energy level and laser properties of Yb:Ca_4YO(BO_3)_3 crystal, Mater. Res. Bull. 35, 799 (2000)CrossRefGoogle Scholar
  468. 11.468.
    C. Krankel, R. Peters, K. Petermann, P. Loiseau, G. Aka, G. Huber: Efficient continuous-wave thin disk laser operation of Yb:Ca4YO(BO3)3 in E parallel to Z and E parallel to X orientations with 26 W output power, J. Opt. Soc. Am. B 26, 1310–1314 (2009)ADSCrossRefGoogle Scholar
  469. 11.469.
    A. Aron, G. Aka, B. Viana, A. Kahn-Harari, D. Vivien, F. Druon, F. Balembois, P. Georges, A. Brun, N. Lenain, M. Jacquet: Spectroscopic properties and laser performances of Yb:YCOB and potential of the Yb:LaCOB material, Opt. Mater. 16, 181 (2001)ADSCrossRefGoogle Scholar
  470. 11.470.
    D.A. Hammons, J.M. Eichenholz, Q. Ye, B.H.T. Chai, L. Shah, R.E. Peale, M. Richardson, H. Qiu: Laser action in Yb3+:YCOB (Yb3+:YCa_4OBO_3)_3, Opt. Comm. 156, 327 (1998)ADSCrossRefGoogle Scholar
  471. 11.471.
    X.Y. Zhang, A. Brenier, Q.P. Wang, Z.P. Wang, J. Chang, P. Li, S.J. Zhang, S.H. Ding, S.T. Li: Passive Q-switching characteristics of Yb3+:Gd_3Ga_5O_12 crystal, Opt. Express 13, 7708 (2005)ADSCrossRefGoogle Scholar
  472. 11.472.
    G.A. Bogomolova, D.N. Vylegzhanin, A.A. Kaminskii: Spectral and lasing investigations of garnets with Yb3+ions, Sov. Phys. JETP 42, 440 (1976)ADSGoogle Scholar
  473. 11.473.
    K.S. Bagdasarov, A.A. Kaminskii, A.M. Kevorkov, A.M. Prokhorov: Rare earth scandium-aluminum garnets with impurity of TR3+ ions as active media for solid state lasers, Sov. Phys. Dokl. 19, 671 (1975)ADSGoogle Scholar
  474. 11.474.
    J. Du, X.Y. Liang, Y. Xu, R.X. Li, Z.Z. Xu, C.F. Yan, G.J. Zhao, L.B. Su, J. Xu: Tunable and efficient diode-pumped Yb3+:GYSO laser, Opt. Express 14, 3333 (2006)ADSCrossRefGoogle Scholar
  475. 11.475.
    W.X. Li, H.F. Pan, L. Ding, H.P. Zeng, W. Lu, G.J. Zhao, C.F. Yan, L.B. Su, J. Xu: Efficient diode-pumped Yb:Gd_2SiO_5, Appl. Phys. Lett. 88, 221117 (2006)ADSCrossRefGoogle Scholar
  476. 11.476.
    C.F. Yan, G.J. Zhao, L.H. Zhang, J. Xu, X.Y. Liang, D. Juan, W.X. Li, H.F. Pan, L.G. Ding, H.P. Zeng: A new Yb-doped oxyorthosilicate laser crystal: Yb:Gd_2SiO_5, Solid State Commun. 137, 451 (2006)ADSCrossRefGoogle Scholar
  477. 11.477.
    W.X. Li, H.F. Pan, L.E. Ding, H.P. Zeng, G.J. Zhao, C.F. Yan, L.B. Su, J. Xu: Diode-pumped continuous-wave and passively mode-locked Yb:GSO laser, Opt. Express 14, 686 (2006)ADSCrossRefGoogle Scholar
  478. 11.478.
    Y.H. Xue, C.Y. Wang, Q.W. Liu, Y.F. Li, L. Chai, C.F. Yan, G.J. Zhao, L.B. Su, X.D. Xu, J. Xu: Characterization of diode-pumped laser operation of a novel Yb:GSO crystal, IEEE J. Quantum Electron. 42, 517 (2006)ADSCrossRefGoogle Scholar
  479. 11.479.
    Y.H. Xue, Q.Y. Wang, L. Chai, Q.W. Liu, G.J. Zhao, L.B. Su, X.D. Xu, J. Xu: A novel LD pumped Yb:GSO laser operating at 1090 nm with low threshold, Acta Phys. Sin. 55, 456 (2006)Google Scholar
  480. 11.480.
    Y.H. Xue, C.Y. Wang, Q.W. Liu, Y.F. Li, L. Chai, C.F. Yan, G.J. Zhao, L.B. Su, X.D. Xu, J. Xu: Characterization of diode-pumped laser operation of a novel Yb:GSO crystal, IEEE J. Quantum Electron. 42, 517–521 (2006)ADSCrossRefGoogle Scholar
  481. 11.481.
    J. Du, X.Y. Liang, Y. Xu, R.X. Li, Z.Z. Xu, C.F. Yan, G.J. Zhao, L.B. Su, J. Xu: Tunable and efficient diode-pumped Yb3+:GYSO laser, Opt. Express 14, 3333–3338 (2006)ADSCrossRefGoogle Scholar
  482. 11.482.
    J. Petit, B. Viana, P. Goldner, D. Vivien, P. Louiseau, B. Ferrand: Laser oscillation with low quantum defect in Yb:GdVO_4, a crystal with high thermal conductivity, Opt. Lett. 29, 833 (2004)ADSCrossRefGoogle Scholar
  483. 11.483.
    J. Petit, B. Viana, P. Goldner, D. Vivien, P. Louiseau, B. Ferrand: Laser osciallation with low quantum defect in Yb:GdVO_4, a crystal with high thermal conductivity, Opt. Lett. 29, 833 (2004)ADSCrossRefGoogle Scholar
  484. 11.484.
    J.H. Liu, X. Mateos, H.J. Zhang, J.Y. Wang, M.H. Jiang, U. Griebner, V. Petrov: Characteristics of a continuous-wave Yb:GdVO_4 laser end pumped by a high-power diode, Opt. Lett. 31, 2580 (2006)ADSCrossRefGoogle Scholar
  485. 11.485.
    J. Hellstrom, H. Henricsson, V. Pasiskevicius, U. Bunting, D. Haussmann: Polarization-tunable Yb:KGW laser based on internal conical refraction, Opt. Lett. 32, 2783–2785 (2007)ADSCrossRefGoogle Scholar
  486. 11.486.
    A.A. Lagatsky, N.V. Kuleshov, V.P. Mikhailov: Diode-pumped CW lasing of Yb:KYW and Yb:KGW, Opt. Commun. 165, 71 (1999)ADSCrossRefGoogle Scholar
  487. 11.487.
    A. Major, D. Sandkuijl, V. Barzda: A diode-pumped continuous-wave Yb:KGW laser with N(g)-axis polarized output, Laser Phys. Lett. 6, 779–781 (2009)ADSCrossRefGoogle Scholar
  488. 11.488.
    J.E. Hellström, S. Bjurshagen, V. Pasiskevicius, J. Liu, V. Petrov, U. Griebner: Efficient Yb:KGW lasers end-pumped by high-power diode bars, Appl. Phys. B 83, 235 (2006)ADSCrossRefGoogle Scholar
  489. 11.489.
    P. Russbueldt, T. Mans, J. Weitenberg, H.D. Hoffmann, R. Poprawe: Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier, Opt. Lett. 35, 4169–4171 (2010)ADSCrossRefGoogle Scholar
  490. 11.490.
    S. Rivier, X. Mateos, O. Silvestre, V. Petrov, U. Griebner, M.C. Pujol, M. Aguilo, F. Diaz, S. Vernay, D. Rytz: Thin-disk Yb:KLu(WO4)2 laser with single-pass pumping, Opt. Lett. 33, 735–737 (2008)ADSCrossRefGoogle Scholar
  491. 11.491.
    U. Griebner, J.H. Liu, S. Rivier, A. Aznar, R. Grunwald, R.M. Sole, M. Aguilo, F. Diaz, V. Petrov: Laser operation of epitaxially grown Yb:KLu(WO_4)_2-KLu(WO_4)_2 composites with monoclinic crystalline structure, IEEE J. Quantum Electron. 41(3), 408 (2005)ADSCrossRefGoogle Scholar
  492. 11.492.
    X. Mateos, R. Solé, J. Gavaldá, M. Aguiló, J. Massons, F. Díaz, V. Petrov, U. Griebner: Crystal growth, spectroscopic studies and laser operation of Yb3+-doped potassium lutetium tungstates, Opt. Mater. 28, 519–523 (2006)ADSCrossRefGoogle Scholar
  493. 11.493.
    D. Geskus, S. Aravazhi, E. Bernhardi, C. Grivas, S. Harkema, K. Hametner, D. Gunther, K. Worhoff, M. Pollnau: Low-threshold, highly efficient Gd3+, Lu3+ co-doped KY(WO4)2:Yb3+ planar waveguide lasers, Laser Phys. Lett. 6, 800–805 (2009)ADSCrossRefGoogle Scholar
  494. 11.494.
    A. Aznar, R. Sole, M. Aguilo, F. Diaz, U. Griebner, R. Grunwald, V. Petrov: Growth, optical characterization, and laser operation of epitaxial Yb:KY(WO_4)_2/KY(WO_4)_2 composites with monoclinic structure, Appl. Phys. Lett. 85, 4313 (2004)ADSCrossRefGoogle Scholar
  495. 11.495.
    A.A. Lagatsky, E.U. Rafailov, A.R. Sarmani, C.T.A. Brown, W. Sibbett, P.G.R. Smith, L. Ming: Efficient femtosecond green-light source with a diode-pumped mode-locked Yb3+:KY(WO4)2 laser, Opt. Lett. 30, 1144 (2005)ADSCrossRefGoogle Scholar
  496. 11.496.
    F. Brunner, T. Südmeyer, E. Innerhofer, F. Morier-Genoud, R. Paschotta: 240 fs pulses with 22 W average power from a mode-locked thin-disk Yb:KY(WO_4)_2 laser, Opt. Lett. 27, 13 (2002)CrossRefGoogle Scholar
  497. 11.497.
    M. Larionov, J. Gao, S. Erhard, A. Giesen, K. Contag, V. Peters, E. Mix, L. Fornasiero, K. Petermann, G. Huber, J. Aus der Au, G.J. Spühler, F. Brunner, R. Paschotta, U. Keller, A.A. Lagatsky, A. Abdolvand, N.V. Kuleshov: Thin disk laser operation and spectroscopy characterization of Yb-doped Sesquioxides and Potassium Tungstates, Advanced Solid-State Lasers, Vol. 50, ed. by C. Marshall (Opt. Soc. Am., Washington 2001) p. 625Google Scholar
  498. 11.498.
    M. Hildebrandt, U. Bünting, U. Kosch, D. Haussmann, T. Levy, M. Krause, O. Müller, U. Bartuch, W. Viöl: Diode-pumped Yb:KYW thin-disk laser operation with wavelength tuning to small quantum defects, Opt. Commun. 259, 796–798 (2006)ADSCrossRefGoogle Scholar
  499. 11.499.
    P. Klopp, V. Petrov, U. Griebner, V. Nesterenko, V. Nikolov, M. Marinov, M.A. Bursukova, M. Galan: Continuous-wave lasing of a stoichiometric Yb laser material: KYb(WO_4)_2, Opt. Lett. 28, 322 (2003)ADSCrossRefGoogle Scholar
  500. 11.500.
    M.C. Pujol, M.A. Bursukova, F. Güell, X. Mateos, R. Solé, J. Gavaldá, M. Aguiló, J. Massons, F. Díaz: Growth, optical characterization, and laser operation of a stoichiometric crystal KYb(WO_4)_2, Phys. Rev. B 65, 165121 (2002)ADSCrossRefGoogle Scholar
  501. 11.501.
    J.J. Romero, J. Johannsen, M. Mond, K. Petermann, G. Huber, E. Heumann: Continuous-wave laser action of Yb3+-doped lanthanum scandium borate, Appl. Phys. B 80, 159 (2005)ADSCrossRefGoogle Scholar
  502. 11.502.
    C. Krankel, J. Johannsen, R. Peters, K. Petermann, G. Huber: Continuous-wave high power laser operation and tunability of Yb:LaSc3(BO3)4 in thin disk configuration, Appl. Phys. B 87, 217–220 (2007)ADSCrossRefGoogle Scholar
  503. 11.503.
    C. Kränkel, J. Johannsen, M. Mond, K. Petermann, G. Huber: High power Yb:LaSc_3(BO_3)_4 thin disk laser. In: Adv. Solid State Photonis (Opt. Soc. Am., Washington 2006), paper WD2Google Scholar
  504. 11.504.
    M. Rico, U. Griebner, V. Petrov, P. Ortega, X.M. Han, C. Cascales, C. Zaldo: Growth, spectroscopy, and tunable laser operation of the disordered crystal LiGd(MoO_4)_2 doped with ytterbium, J. Opt. Soc. Am. B 23, 1083 (2006)ADSCrossRefGoogle Scholar
  505. 11.505.
    A.S. Yasukevich, V.E. Kisel, S.V. Kurilchik, S.V. Grigoriev, N.V. Kuleshov, E.Y. Gordeev, S.L. Korableva, A.K. Naumov, V.V. Semashko: Continuous wave diode pumped Yb:LLF and Yb:NYF lasers, Opt. Commun. 282, 4404–4407 (2009)ADSCrossRefGoogle Scholar
  506. 11.506.
    J.K. Jones, J.P. de Sandra, M. Hempstead, D.P. Shepherd, A.C. Large, A.C. Tropper, J.S. Wilkinson: Channel waveguide laser at 1 μ m in Yb-diffused LiNbO_3, Opt. Lett. 20, 1477 (1995)ADSCrossRefGoogle Scholar
  507. 11.507.
    M.O. Ramirez, D. Jaque, J.A. Sanz Garcia, L.E. Bausa, J.E. Munoz Santiuste: 74 % slope efficiency from a diode-pumped Yb3+:LiNbO_3:MgO laser crystal, Appl. Phys. B 77, 621 (2003)ADSCrossRefGoogle Scholar
  508. 11.508.
    J. Sablayrolles, V. Jubera, J.P. Chaminade, I. Manek-Hönninger, S. Murugan, T. Cardinal, R. Olazcuaga, A. Garcia, F. Salin: Crystal growth, luminescent and lasing properties of the ytterbium doped Li_6Y(BO_3)_3 compound, Opt. Mater. 27, 1681–1685 (2005)ADSCrossRefGoogle Scholar
  509. 11.509.
    J. Sablayrolles, V. Jubera, M. Delaigue, I. Manek-Honninger, J.P. Chaminade, J. Hejtmanek, R. Decourt, A. Garcia: Thermal properties and cw-laser operation of the ytterbium doped borate Li6Y(BO3)3, Mater. Chem Phys. 115, 512–515 (2009)CrossRefGoogle Scholar
  510. 11.510.
    S.S. Sumida, T.Y. Fan, R. Hutcheson: Spectroscopy and diode-pumped lasing of Yb3+-doped Lu_3Al_5O_12 (Yb:LuAG). In: OSA Proc. Adv. Solid State Lasers, Vol. 24, ed. by B.H.T. Chai, S.A. Payne (Opt. Soc. Am., Washington 1995) p. 348Google Scholar
  511. 11.511.
    K. Beil, S.T. Fredrich-Thornton, F. Tellkamp, R. Peters, C. Krankel, K. Petermann, G. Huber: Thermal and laser properties of Yb:LuAG for kW thin disk lasers, Opt. Express 18, 20712–20722 (2010)ADSCrossRefGoogle Scholar
  512. 11.512.
    D. Sangla, N. Aubry, A. Nehari, A. Brenier, O. Tillement, K. Lebbou, F. Balembois, P. Georges, D. Perrodin, J. Didierjean, J.M. Fourmigue: Yb-doped Lu3Al5O12 fibers single crystals grown under stationary stable state for laser application, J. Cryst. Growth 312, 125–130 (2009)ADSCrossRefGoogle Scholar
  513. 11.513.
    D. Geskus, S. Aravazhi, C. Grivas, K. Worhoff, M. Pollnau: Microstructured KY(WO4)2:Gd3+, Lu3+, Yb3+ channel waveguide laser, Opt. Express 18, 8853–8858 (2010)ADSCrossRefGoogle Scholar
  514. 11.514.
    H. Kuhn, S. Heinrich, A. Kahn, K. Petermann, J.D.B. Bradley, K. Worhoff, M. Pollnau, G. Huber: Monocrystalline Yb3+:(Gd,Lu)2O3 channel waveguide laser at 976.8 nm, Opt. Lett. 34, 2718–2720 (2009)ADSCrossRefGoogle Scholar
  515. 11.515.
    R. Peters, C. Krankel, K. Petermann, G. Huber: Broadly tunable high-power Yb:Lu2O3 thin disk laser with 80 % slope efficiency, Opt. Express 15, 7075–7082 (2007)ADSCrossRefGoogle Scholar
  516. 11.516.
    U. Griebner, V. Petrov, K. Petermann, V. Peters: Passively mode-locked Yb:Lu_2O_3 laser, Opt. Express 12, 3125 (2004)ADSCrossRefGoogle Scholar
  517. 11.517.
    R. Peters, C. Krankel, S.T. Fredrich-Thornton, K. Beil, K. Petermann, G. Huber, O.H. Heckl, C.R.E. Baer, C.J. Saraceno, T. Sudmeyer, U. Keller: Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides, Appl. Phys. B 102, 509–514 (2011)ADSCrossRefGoogle Scholar
  518. 11.518.
    C.R.E. Baer, C. Krankel, C.J. Saraceno, O.H. Heckl, M. Golling, T. Sudmeyer, R. Peters, K. Petermann, G. Huber, U. Keller: Femtosecond Yb:Lu2O3 thin disk laser with 63 W of average power, Opt. Lett. 34, 2823–2825 (2009)ADSCrossRefGoogle Scholar
  519. 11.519.
    C.R.E. Baer, C. Krankel, C.J. Saraceno, O.H. Heckl, M. Golling, R. Peters, K. Petermann, T. Sudmeyer, G. Huber, U. Keller: Femtosecond thin-disk laser with 141 W of average power, Opt. Lett. 35, 2302–2304 (2010)ADSCrossRefGoogle Scholar
  520. 11.520.
    A. Pirri, G. Toci, M. Vannini: First laser oscillation and broad tunability of 1 at.% Yb-doped Sc2O3 and Lu2O3 ceramics, Opt. Lett. 36, 4284–4286 (2011)ADSCrossRefGoogle Scholar
  521. 11.521.
    K. Takaichi, H. Yagi, A. Shirakawa, K. Ueda, S. Hosokawa, T. Yanagitani, A.A. Kaminskii: Lu_2O_3:Yb3+ ceramics – a novel gain material for ghigh-power solid-state lasers, Phys. Status Solidi (a) 1, R1 (2005)CrossRefGoogle Scholar
  522. 11.522.
    J. Sanghera, J. Frantz, W. Kim, G. Villalobos, C. Baker, B. Shaw, B. Sadowski, M. Hunt, F. Miklos, A. Lutz, I. Aggarwal: 10 % Yb3+-Lu2O3 ceramic laser with 74 % efficiency, Opt. Lett. 36, 576–578 (2011)ADSCrossRefGoogle Scholar
  523. 11.523.
    J. Sanghera, W. Kim, C. Baker, G. Villalobos, J. Frantz, B. Shaw, A. Lutz, B. Sadowski, R. Miklos, M. Hunt, F. Kung, I. Aggarwal: Laser oscillation in hot pressed 10 % Yb3+:Lu2O3 ceramic, Opt. Mater. 33, 670–674 (2011)ADSCrossRefGoogle Scholar
  524. 11.524.
    C.R.E. Baer, C. Krankel, O.H. Heckl, M. Golling, T. Sudmeyer, R. Peters, K. Petermann, G. Huber, U. Keller: 227-fs pulses from a mode-locked Yb:LuScO3 thin disk laser, Opt. Express 17, 10725–10730 (2009)ADSCrossRefGoogle Scholar
  525. 11.525.
    J.H. Liu, V. Petrov, H.J. Zhang, J.Y. Wang, M.H. Jiang: High-power laser performance of a-cut and c-cut Yb:LuVO4 crystals, Opt. Lett. 31, 3294–3296 (2006)ADSCrossRefGoogle Scholar
  526. 11.526.
    Y. Cheng, H.J. Zhang, Y.G. Yu, J.Y. Wang, X.T. Tao, J.H. Liu, V. Petrov, Z.C. Ling, H.R. Xia, M.H. Jiang: Thermal properties and continuous-wave laser performance of Yb:LuVO4 crystal, Appl. Phys. B 86, 681–685 (2007)ADSCrossRefGoogle Scholar
  527. 11.527.
    J.H. Liu, X. Mateos, H.J. Zhang, J.Y. Wang, M.H. Jiang, U. Griebner, V. Petrov: Continuous-wave laser operation of Yb:LuVO_4, Opt. Lett. 30, 3162 (2005)ADSCrossRefGoogle Scholar
  528. 11.528.
    M. Rico, J. Liu, U. Griebner, V. Petrov: Tunable laser operation of ytterbium in disordered single crystals of Yb:NaGd(WO_4)_2, Opt. Express 12, 22 (2004)CrossRefGoogle Scholar
  529. 11.529.
    R. Peters, J. Johannsen, M. Mond, K. Petermann, G. Huber: Yb:NaGd(WO_4)_2: Spectroscopic characterisation and laser demonstration, Conf. Lasers Electroopt. Eur. (European Physical Society, Mulhouse 2005), CA9-4-TuEGoogle Scholar
  530. 11.530.
    Y. Cheng, X.B. Yang, Z. Xin, S.S. Cheng, D.H. Cao, X.D. Xu, J. Xu: Crystal growth, spectral and laser properties of Yb3+:NaGd(WO4)2 crystal, Laser Phys. 19, 2168–2173 (2009)ADSCrossRefGoogle Scholar
  531. 11.531.
    R. Peters, C. Krankel, K. Petermann, G. Huber: Power scaling potential of Yb:NGW in thin disk laser configuration, Appl. Phys. B 91, 25–28 (2008)ADSCrossRefGoogle Scholar
  532. 11.532.
    M. Rico, J. Liu, J.M. Cano-Torres, A. Garcia-Cortes, C. Cascales, C. Zaldo, U. Griebner, V. Petrov: Continuous wave and tunable laser operation of Yb3+ in disordered NaLa(MoO_4)_2, Appl. Phys. B 81, 621 (2005)ADSCrossRefGoogle Scholar
  533. 11.533.
    A.V. Mandrik, A.E. Troshin, V.E. Kisel, A.S. Yasukevich, G.N. Klavsut, N.V. Kuleshov, A.A. Pavlyuk: CW and Q-switched diode-pumpedlaser operation of Yb3+:NaLa(MoO_4)_2, Appl. Phys. B 81, 1119 (2005)ADSCrossRefGoogle Scholar
  534. 11.534.
    J. Liu, J.M. Cano-Torres, E.-B. Cascales, F. Esteban-Betegón, M.D. Serrano, V. Volkov, C. Zaldo, M. Rico, U. Griebner, V. Petrov: Growth and continuous-wave laser operation of disordered crystals of Yb3+:NaLa(WO_4)_2 and Yb3+:NaLa(MoO_4)_2, Phys. Status Solidi (a) 202(4), R29–R31 (2005)ADSCrossRefGoogle Scholar
  535. 11.535.
    G.Q. Xie, D.Y. Tang, H.J. Zhang, J.Y. Wang, L.J. Qian: Efficient operation of a diode-pumped Yb:NaY(WO4)2 laser, Opt. Express 16, 1686–1691 (2008)ADSCrossRefGoogle Scholar
  536. 11.536.
    V. Peters, E. Mix, L. Fornasiero, K. Petermann, G. Huber, S.A. Basun: Efficient laser operation of Yb3+:Sc_2O_3 and spectroscopic characterization of Pr3+ in cubic sesquioxides, Laser Phys. 10, 417 (2000)Google Scholar
  537. 11.537.
    J. Liu, M. Rico, U. Griebner, V. Petrov, V. Peters, K. Petermann, G. Huber: Efficient room temperature continuous-wave operation of an Yb3+:Sc_2O_3 crystal laser at 1041.6 and 1094.6 nm, Phys. Status Solidi (a) 202, R19 (2005)ADSCrossRefGoogle Scholar
  538. 11.538.
    J. Lu, J.F. Bisson, K. Takaichi, T. Uematsu, A. Shirakawa, M. Musha, K. Ueda, H. Yagi, T. Yanagitani, A.A. Kaminskii: Yb3+:Sc_2O_3 ceramic laser, Appl. Phys. Lett. 83(6), 1101 (2003)ADSCrossRefGoogle Scholar
  539. 11.539.
    L. Zheng, J. Xu, G. Zhao, L. Su, F. Wu, X. Liang: Bulk crystal growth and efficient diode-pumped laser performance of Yb3+:Sc2SiO5, Appl. Phys. B 91, 443–445 (2008)ADSCrossRefGoogle Scholar
  540. 11.540.
    M. Siebold, J. Hein, M.C. Kaluza, R. Uecker: High-peak-power tunable laser operation of Yb:SrF2, Opt. Lett. 32, 1818–1820 (2007)ADSCrossRefGoogle Scholar
  541. 11.541.
    A.J. Bayramian, C. Bibeau, R.J. Beach, C.D. Marshall, S.A. Payne, W.F. Krupke: Three-level Q-switched laser operation of ytterbium-doped Sr_5(PO_4)_3F at 985 nm, Opt. Lett. 25, 622 (2000)ADSCrossRefGoogle Scholar
  542. 11.542.
    S. Yiou, F. Balembois, P. Georges: Numerical modeling of a continous-wave Yb-doped bulk crystal laser emitting on a three-level laser transition near 980 nm, J. Opt. Soc. Am. B 22, 572 (2005)ADSCrossRefGoogle Scholar
  543. 11.543.
    S. Yiou, F. Balembois, K. Schaffers, P. Georges: Efficient laser operation of an Yb:S-FAP crystal at 985 nm, Appl. Opt. 42, 4883 (2003)ADSCrossRefGoogle Scholar
  544. 11.544.
    A.J. Bayramian, C.D. Marshall, K.I. Schaffers, S.A. Payne: Characterization of Yb3+: Sr_5-xBa_x(PO_4)_3F crystals for diode-pumped lasers, IEEE J. Quantum Electron. 35, 665 (1999)ADSCrossRefGoogle Scholar
  545. 11.545.
    L.D. DeLoach, S.A. Payne, L.K. Smith, W.L. Kway, W.F. Krupke: Laser and spectroscopic properties of Sr_5(PO_4)_3:Yb, J. Opt. Soc. Am. B 11, 269 (1994)ADSCrossRefGoogle Scholar
  546. 11.546.
    C.D. Marshall, L.K. Smith, R.J. Beach, M.A. Emanuel, K.I. Schaffers, J. Skidmore, S.A. Payne, B.H.T. Chai: Diode-pumped ytterbium-doped Sr_5(PO_4)_3F laser performance, IEEE J. Quantum Electron. 32, 650 (1996)ADSCrossRefGoogle Scholar
  547. 11.547.
    R. Gaume, B. Viana, D. Vivien, J.P. Roger, D. Forunier, J.P. Souron, G. Wallez, S. Chenais, F. Balembois, P. Georges: Mechanical, thermal and laser properties of Yb:(Sr_1-xCa_x)_3Y(BO_3)_3 (Yb:CaBOYS) for 1 μ m laser applications, Opt. Mater. 24, 385 (2003)ADSCrossRefGoogle Scholar
  548. 11.548.
    F. Druon, S. Chenais, P. Raybaut, F. Balembois, P. Georges, R. Gaume, P.H. Haumesser, B. Viana, D. Vivien, S. Dhellemmes, V. Ortiz, C. Larat: Apatite-structure crystal, Yb3+:SrY_4(SiO_4)_3O, for the development of diode-pumped femtosecond lasers, Opt. Lett. 27, 1914 (2002)ADSCrossRefGoogle Scholar
  549. 11.549.
    R. Allen, L. Esterowitz: CW tunable ytterbium YAG laser-pumped by titanium sapphire, Electron. Lett. 31, 639 (1995)ADSCrossRefGoogle Scholar
  550. 11.550.
    T. Taira, J. Saikawa, T. Kobayashi, R.L. Byer: Diode-pumped tunable Yb:YAG miniature lasers at room temperature: Modeling and experiment, IEEE J. Sel. Top. Quantum Electron. 3(1), 100 (1997)CrossRefGoogle Scholar
  551. 11.551.
    H.W. Bruesselbach, D.S. Sumida, R.A. Reeder, R.W. Byren: Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers, IEEE J. Sel. Top. Quantum Electron. 3(1), 105 (1997)CrossRefGoogle Scholar
  552. 11.552.
    T.Y. Fan, D.J. Ripin, R.L. Aggarwal, J.R. Ochoa, B. Chann, M. Tilleman, J. Spitzberg: Cryogenic Yb3+-doped solid-state lasers, IEEE J. Sel. Top. Quantum Electron. 13, 448–459 (2007)CrossRefGoogle Scholar
  553. 11.553.
    A. Pirri, D. Alderighi, G. Toci, M. Vannini: High-efficiency, high-power and low threshold Yb3+:YAG ceramic laser, Opt. Express 17, 23344–23349 (2009)CrossRefGoogle Scholar
  554. 11.554.
    D.C. Hanna, J.K. Jones, A.C. Large, D.P. Shepherd, A.C. Tropper, P.J. Chandler, M.J. Rodman, P.D. Townsend, L. Zhang: Quasi-three level 1.03 μ m laser operation of a planar ion-implanted Yb:YAG waveguide, Opt. Commun. 99, 211 (1993)ADSCrossRefGoogle Scholar
  555. 11.555.
    T. Taira, W.M. Tulloch, R.L. Byer: Modeling of quasi-three-level lasers and operation of CW Yb:YAG, Appl. Opt. 36, 1867 (1997)ADSCrossRefGoogle Scholar
  556. 11.556.
    T. Calmano, A.G. Paschke, J. Siebenmorgen, S.T. Fredrich-Thornton, H. Yagi, K. Petermann, G. Huber: Characterization of an Yb:YAG ceramic waveguide laser, fabricated by the direct femtosecond-laser writing technique, Appl. Phys. B 103, 1–4 (2011)ADSCrossRefGoogle Scholar
  557. 11.557.
    J. Siebenmorgen, T. Calmano, K. Petermann, G. Huber: Highly efficient Yb:YAG channel waveguide laser written with a femtosecond-laser, Opt. Express 18, 16035–16041 (2010)ADSCrossRefGoogle Scholar
  558. 11.558.
    T. Taira, J. Saikawa, T. Kobayashi, R.L. Byer: Diode-pumped tunable Yb:YAG miniature lasers at room temperature: Modeling and experiment, IEEE J. Sel. Top. Quantum Electron. 3, 100 (1997)CrossRefGoogle Scholar
  559. 11.559.
    I.J. Thomson, F.J.F. Monjardin, H.J. Baker, D.R. Hall: Efficient Operation of a 400 W Diode Side-Pumped Yb:YAG Planar Waveguide Laser, IEEE J. Quantum Electron. 47, 1336–1345 (2011)ADSCrossRefGoogle Scholar
  560. 11.560.
    J. Dong, A. Shirakawa, S. Huang, Y. Feng, K. Takaichi, M. Musha, K. Ueda, A.A. Kaminskii: Stable laser-diode pumped microchip sub-nanosecond Cr,Yb:YAG self-Q-switched laser, Laser Phys. Lett. 2, 387 (2005)ADSCrossRefGoogle Scholar
  561. 11.561.
    O.A. Buryy, S.B. Ubiszkii, S.S. Melnyk, A.O. Matkovskii: The Q-switched Nd:YAG and Yb:YAG microchip lasers optimization and comparative analysis, Appl. Phys. B 78, 291 (2004)ADSCrossRefGoogle Scholar
  562. 11.562.
    J. Aus der Au, G.J. Spühler, T. Südmeyer, R. Paschotta, R. Hövel, M. Moser, S. Erhard, M. Karszewski, A. Giesen, U. Keller: 16.2 W average power from a diode-pumped femtosecond Yb:YAG thin disc laser, Opt. Lett. 25, 859 (2000)ADSCrossRefGoogle Scholar
  563. 11.563.
    J. Dong, P.Z. Deng, Y.P. Liu, Y.H. Zhang, G.S. Huang, F.X. Gan: Performance of the self-Q-switched Cr,Yb:YAG laser, Chin. Phys. Lett. 19, 342 (2002)ADSCrossRefGoogle Scholar
  564. 11.564.
    J. Dong, P.H. Deng, Y.P. Liu, Y.H. Zhang, J. Xu, W. Chen, X.L. Xie: Passively Q-switched Yb:YAG laser with Cr4+:YAG as the saturable absorber, Appl. Opt. 40, 4303 (2001)ADSCrossRefGoogle Scholar
  565. 11.565.
    U. Griebner, H. Schönnagel: Laser operation with nearly diffraction-limited output from a Yb:YAG multimode channel waveguide, Opt. Lett. 24, 750 (1999)ADSCrossRefGoogle Scholar
  566. 11.566.
    C. Bibeau, R.J. Beach, S.C. Mitchell, M.A. Emanuel, J. Skidmore, C.A. Ebbers, S.B. Sutton, K.S. Jancaitis: High-average-power 1 μ m performance and frequency conversion of a diode-end-pumped Yb:YAG laser, IEEE J. Quantum Electron. 34, 2010 (1998)ADSCrossRefGoogle Scholar
  567. 11.567.
    P. Burdack, T. Fox, M. Bode, I. Freitag: 1 W of stable single-frequency output at 1.03 μ m from a novel, monolithic, non-planar Yb:YAG ring laser operating at room temperature, Opt. Express 14, 4363 (2006)ADSCrossRefGoogle Scholar
  568. 11.568.
    J. Saikawa, T. Taira: Second-harmonic nonlinear mirror CW mode locking in Yb:YAG microchip lasers, Jpn. J. Appl. Phys. 42, L649 (2003)ADSCrossRefGoogle Scholar
  569. 11.569.
    J. Kong, D.Y. Tang, B. Zhao, J. Lu, K. Ueda, H. Yagi, T. Yanagitani: 9.2 W diode-end-pumped Yb:Y_2O_3 ceramic laser, Appl. Phys. Lett. 86, 161116 (2005)ADSCrossRefGoogle Scholar
  570. 11.570.
    N. Sugimoto, Y. Ohishi, Y. Katoh, A. Tate, M. Shimokozno, S. Sudo: A ytterbium- and neodymium-codoped yttrium aluminum garnet-buried channel waveguide laser pumped at 0.81 μ m, Appl. Phys. Lett. 67, 582 (1995)ADSCrossRefGoogle Scholar
  571. 11.571.
    P. Wang, J.M. Dawes, P. Dekker, J.A. Piper: Highly efficient diode-pumped ytterbium-doped yttrium aluminum borate laser, Opt. Commun. 174, 467 (2000)ADSCrossRefGoogle Scholar
  572. 11.572.
    J.H. Liu, X. Mateos, H.J. Zhang, J. Li, J.Y. Wang, V. Petrov: High-power laser performance of Yb:YAl3 (BO3)4 crystals cut along the crystallographic axes, IEEE J. Quantum Electron. 43, 385–390 (2007)ADSCrossRefGoogle Scholar
  573. 11.573.
    J. Li, J.Y. Wang, X.F. Cheng, X.B. Hu, P.A. Burns, J.M. Dawes: Thermal and laser properties of Yb:YAl_3(BO_3)_4 crystal, J. Cryst. Growth 250, 458 (2003)ADSCrossRefGoogle Scholar
  574. 11.574.
    J. Li, J.Y. Wang, X.B. Hu, Y.G. Liu, J. Piper, P. Dekker: Growth of Yb:YAB crystal and its laser performance, J. Rare Earths 20, 104 (2002)Google Scholar
  575. 11.575.
    S. Matsubara, M. Inoue, S. Kawato, T. Kobayashi: Continuous wave laser oscillation of stoichiometric YbAG crystal, Jap. J. Appl. Phys. Part 2 – Lett. Express Lett. 46, L61–L63 (2007)CrossRefGoogle Scholar
  576. 11.576.
    J.H. Liu, V. Petrov, H.J. Zhang, J. Li, J.Y. Wang: Highly efficient passively Q-switched Yb:YAl3(BO3)4-Cr4+: YAG laser end-pumped by a high-power diode, IEEE J. Quantum Electron. 44, 283–287 (2008)ADSCrossRefGoogle Scholar
  577. 11.577.
    J. Kawanaka, K. Yamakawa, H. Nishioka, K. Ueda: 30 mJ, dioded-pumped, chirped-pulse Yb:YLF regenerative amplifier, Opt. Lett. 28, 2121 (2003)ADSCrossRefGoogle Scholar
  578. 11.578.
    L.E. Zapata, D.J. Ripin, T.Y. Fan: Power scaling of cryogenic Yb:LiYF4 lasers, Opt. Lett. 35, 1854–1856 (2010)CrossRefGoogle Scholar
  579. 11.579.
    M. Vannini, G. Toci, D. Alderighi, D. Parisi, F. Cornacchia, M. Tonelli: High efficiency room temperature laser emission in heavily doped Yb:YLF, Opt. Express 15, 7994–8002 (2007)ADSCrossRefGoogle Scholar
  580. 11.580.
    G. Galzerano, P. Laporta, E. Sani, L. Bonelli, A. Toncelli, M. Tonelli, A. Pesatori, C. Svelto: Room-temperature diode-pumped Yb:KYF4 laser, Opt. Lett. 31, 3291–3293 (2006)ADSCrossRefGoogle Scholar
  581. 11.581.
    W.X. Li, S.X. Xu, H.F. Pan, L. Ding, H.P. Zeng, W. Guo, C.L. Lu, G.J. Zhao, C.F. Yan, L. Su, J. Xu: Efficient tunable diode-pumped Yb:LYSO laser, Opt. Express 14, 6681 (2006)ADSCrossRefGoogle Scholar
  582. 11.582.
    J. Kong, D.Y. Tang, C.C. Chan, J. Lu, K. Ueda, H. Yagi, T. Yanagitani: High-efficiency 1040 and 1078 nm laser emission of a Yb:Y2O3 ceramic laser with 976 nm diode pumping, Opt. Lett. 32, 247–249 (2007)ADSCrossRefGoogle Scholar
  583. 11.583.
    J. Kong, D.Y. Tang, J. Lu, K. Ueda, H. Yagi, T. Yanagitani: Passively mode-locked Yb:Y_2O_3 ceramic laser with a GaAs-saturable absorber mirror, Opt. Commun. 237, 165 (2004)ADSCrossRefGoogle Scholar
  584. 11.584.
    G.Q. Xie, D.Y. Tang, L.M. Zhao, L.J. Qian, K. Ueda: High-power self-mode-locked Yb:Y2O3 ceramic laser, Opt. Lett. 32, 2741–2743 (2007)ADSCrossRefGoogle Scholar
  585. 11.585.
    J. Kong, J. Lu, K. Takaichi, T. Uematsu, K. Ueda, D.Y. Tang, D.Y. Shen, H. Yagi, T. Yanagitani, A.A. Kaminskii: Diode-pumped Yb:Y_2O_3 ceramic laser, Appl. Phys. Lett. 82(16), 2556 (2003)ADSCrossRefGoogle Scholar
  586. 11.586.
    Y. Qi, Q. Lou, J. Zhou, J. Dong, Y. Wei: High power continuous-wave Yb:Y2O3 ceramic disc laser, Electron. Lett. 45, 1238–1239 (2009)CrossRefGoogle Scholar
  587. 11.587.
    Q. Hao, W.X. Li, H.P. Zeng, Q.H. Yang, C.G. Dou, H.X. Zhou, W. Lu: Low-threshold and broadly tunable lasers of Yb3+-doped yttrium lanthanum oxide ceramic, Appl. Phys. Lett. 92, 211106 (2008)ADSCrossRefGoogle Scholar
  588. 11.588.
    M. Jacquemet, F. Balembois, S. Chenais, F. Druon, P. Georges, R. Gaume, B. Ferrand: First diode-pumped Yb-doped solid-state laser continuously tunable between 1000 and 1010 nm, Appl. Phys. B 78, 13 (2004)ADSCrossRefGoogle Scholar
  589. 11.589.
    F. Thibault: Diode-pumped waveguide lasers and amplifiers based on highly doped Y2SiO5:Yb epitaxial layers, J. Opt. Soc. Am. B 24, 1862–1866 (2007)ADSCrossRefGoogle Scholar
  590. 11.590.
    J. Dong, K.I. Ueda, A.A. Kaminskii: Continuous-wave and Q-switched microchip laser performance of Yb:Y3Sc2Al3O12 crystals, Opt. Express 16, 5241–5251 (2008)ADSCrossRefGoogle Scholar
  591. 11.591.
    A. Ikesue, Y.L. Aung: Synthesis and performance of advanced ceramic lasers, J. Am. Ceram. Soc. 89(6), 1936 (2006)CrossRefGoogle Scholar
  592. 11.592.
    V.E. Kisel, A.E. Troshin, N.A. Tolstik, V.G. Shcherbitsky, N.V. Kuleshov, V.N. Matrosov, T.A. Matrosova, M.I. Kupchenko: Spectroscopy and continuous-wave diode-pumped laser action of Yb3+:YVO_4, Opt. Lett. 29, 2491 (2004)ADSCrossRefGoogle Scholar
  593. 11.593.
    C. Kränkel, D. Fagundes-Peters, S.T. Fredrich, J. Johannsen, M. Mond, G. Guber, M. Bernhagen, R. Uecker: Continuous wave laser operation of Yb3+:YVO_4, Appl. Phys. B 79, 543 (2004)ADSCrossRefGoogle Scholar
  594. 11.594.
    D. Zhang, Y. Shao, H.P. Liu, Y.L. Li, Z.H. Tao, Q.R. Ruan, T.Y. Zhang: Diode-pumped efficient Yb:YGdVO4 thin-disk laser, Laser Phys. Lett. 8, 583–586 (2011)ADSCrossRefGoogle Scholar
  595. 11.595.
    C. Li, C. Wyon, R. Moncorgé: Spectroscopic properties and fluorescence dynamics of Er3+ and Yb3+ in Y_2SiO_5, IEEE J. Quantum Electron. 28, 1209 (1992)ADSCrossRefGoogle Scholar
  596. 11.596.
    I. Sokólska: Spectroscopic characterization of LaGaO_3:Er3+ crystals, Appl. Phys. B 71, 157 (2000)ADSCrossRefGoogle Scholar
  597. 11.597.
    H. Stange, K. Petermann, G. Huber, E.W. Duczynski: Continuous wave 1.6 μ m laser action in Er doped garnets at room temperature, Appl. Phys. B 49, 269 (1989)ADSCrossRefGoogle Scholar
  598. 11.598.
    A. Diening, E. Heumann, G. Huber, O. Kuzmin: High-power diode-pumped Yb,Er:LSB laser at 1.56 μ m. In: Conf. Lasers Electroopt. Tech. Dig., Vol. 6 (Opt. Soc. Am., Washington 1998) p. 299Google Scholar
  599. 11.599.
    D.Y. Shen, J.K. Sahu, W.A. Clarkson: Highly efficient in-band pumped Er:YAG laser with 60 W of output at 1645 nm, Opt. Lett. 31(6), 754 (2006)ADSCrossRefGoogle Scholar
  600. 11.600.
    D. Garbuzov, I. Kudryashov, M. Dubinskii: 110 W (0.9 J) pulsed power from resonantly diode-laser-pumped 1.6 m Er:YAG laser, Appl. Phys. Lett. 87, 121101 (2005)ADSCrossRefGoogle Scholar
  601. 11.601.
    D. Garbuzov, I. Kudryashov, M. Dubinskii: Resonantly diode laser pumped 1.6 μ m-erbium-doped yttrium aluminum garnet solid-state laser, Appl. Phys. Lett. 86, 131115 (2005)ADSCrossRefGoogle Scholar
  602. 11.602.
    S.D. Setzler, M.P. Francis, Y.E. Young, J.R. Konves, E.P. Chicklis: Resonantly pumped eyesafe erbium lasers, IEEE J. Sel. Top. Quantum Electron. 11, 645 (2005)CrossRefGoogle Scholar
  603. 11.603.
    E. Snitzer, R. Woodcock: Yb3+-Er3+ glass laser, Appl. Phys. Lett. 6, 45 (1965)ADSCrossRefGoogle Scholar
  604. 11.604.
    E. Snitzer: Glass lasers, Proc. IEEE 54, 1249 (1966)CrossRefGoogle Scholar
  605. 11.605.
    E. Snitzer, R.F. Woodcock, J. Segre: Phosphate glass Er3+ lasers, IEEE J. Quantum Electron. 4, 360 (1968)ADSCrossRefGoogle Scholar
  606. 11.606.
    S. Hamlin, J. Myers, M. Myers: Eyesafe Lasers: Components, Systems, and Applications, Proc. SPIE 1419, 100–106 (1991)ADSCrossRefGoogle Scholar
  607. 11.607.
    R. Wu, S. Jiang, M. Myers, J. Myers, S. Hamlin: Solid-state laser and nonlinear crystals, Proc. SPIE 2379, 26 (1995)ADSCrossRefGoogle Scholar
  608. 11.608.
    S. Jiang, S. Hamlin, J. Myers, D. Rhonehouse, M. Myers: High-average-power 1.54 μ m Er3+:Yb3+-doped phosphate glass laser. In: Conf. Lasers and Electroopt., OSA Technical Digest, Vol. 9 (Opt. Soc. Am., Washington 1996) p. 380Google Scholar
  609. 11.609.
    R. Wu, S.J. Hamlin, J.A. Hutchinson, L.T. Marshall: Laser diode pumped, passively Q-switched erbium:glass laser, Adv. Solid-State Lasers, ed. by C. Pollock, W. Bosenberg (Opt. Soc. Am., Washington 1997) p. 145Google Scholar
  610. 11.610.
    B.I. Denker, A.A. Korchagin, V.V. Osiko, S.E. Sverchkov, T.H. Allik, J.A. Hutchinson: Diode-pumped and FTIR Q-switched laser performance of novel Yb-Er Glass, OSA Proc. Adv. Solid-State Lasers, ed. by T. Fan, B. Chai (Opt. Soc. Am., Washington 1994) p. 148Google Scholar
  611. 11.611.
    Kigre Inc.: www.kigre.com and references given there (Kigre Inc., Hilton Head 2007)
  612. 11.612.
    J. Taboada, J.M. Taboada, D.J. Stolarski, J.J. Zohner, L.J. Chavey, H.M. Hodnett, G.D. Noojin, R.J. Thomas, S.S. Kumru, C.P. Cain: 100 megawatt power Q-switched Er-glass laser, Solid State Lasers XV: Technology and Devices, ed. by H.J. Hoffman, R.K. Shori (2006)Google Scholar
  613. 11.613.
    R. Wu, J. Myers, M. Myers, T. Wisnewski: 50Hz diode pumped Er:glass eye-safe laser, Adv. Solid-State Lasers, ed. by M. Fejer, H. Injeyan, U. Keller (Opt. Soc. Am., Washington 1999) p. 336Google Scholar
  614. 11.614.
    B. Majaron, M. Lukač, T. Rupnik: Pumping dynamics in Yb,Er:phospate glasses, Proc. SPIE 1864, 2 (1993)ADSCrossRefGoogle Scholar
  615. 11.615.
    A.F. Obaton, J. Bernard, C. Parent, G.L. Flem, J.M. Fernandez-Navarro, J.L. Adam, M.J. Myers, G. Boulon: New laser material for eye-safe sources: Yb3+,Er3+-codoped phospate glasses, Adv. Solid-State Lasers, ed. by M.J. Fejer, H. Injeyan, U. Keller (Opt. Soc. Am., Washington 1999) p. 655Google Scholar
  616. 11.616.
    A. Diening: Diodengepumpte Festkörperlaser im mittleren Infrarotbereich. Ph.D. Thesis (Shaker Verlag, Aachen 1999), in GermanGoogle Scholar
  617. 11.617.
    R.I. Laming, S.B. Poole, E.J. Tarbox: Pump excited state absorption in erbium-doped fibers, Opt. Lett. 13, 1084 (1988)ADSCrossRefGoogle Scholar
  618. 11.618.
    M. Shimizu, M. Yamada, M. Horiguchi, T. Takeshita, M. Okayasu: Erbium-doped fiber amplifier with an extremely high gain coefficient of 11 bD/mW, Electron. Lett. 26, 1641 (1990)CrossRefGoogle Scholar
  619. 11.619.
    M.J.F. Digonnet: Continuous-wave silica fiber lasers. In: Rare-Earth-Doped Fiber Lasers and Amplifiers, 2nd edn., ed. by M.J.F. Digonnet (Marcel Dekker, New York 2001)CrossRefGoogle Scholar
  620. 11.620.
    IPG Photonics: Product information, http://www.ipgphotonics.com (IPG Photonics, Oxford 2006)
  621. 11.621.
    E. Heumann, P.E.A. Möbert, G. Huber: Room-temperature upconversion-pumped CW Yb,Er:YLiF_4 laser at 1.234 μ m, OSA Trends Opt. Photon., Vol. 1, ed. by S.A. Payne, C.R. Pollock (Opt. Soc. Am., Washington 1996) p. 288Google Scholar
  622. 11.622.
    E. Heumann, P.E.A. Möbert, G. Huber: Intracavity frequency doubled Yb,Er:LiYF_4 upconversion-pumped laser at 617 nm, Exp. Tech. Phys. 42, 33 (1996)Google Scholar
  623. 11.623.
    B. Simondi-Teisseire, B. Viana, A.-M. Lejus, J.-M. Benitez, D. Vivien, C. Borel, R. Templier, C. Wyon: Room temperature CW laser operation at ≈1.55  μm (eye-safe range) of Yb:Er and Yb:Er:Ce:Ca_2Al_2SiO_7 crystals, IEEE J. Quantum Electron. 32, 2004 (1996)ADSCrossRefGoogle Scholar
  624. 11.624.
    R. Brinkmann, W. Sohler, H. Suche: Continuous-wave erbium-diffused LiNbO_3 waveguide laser, Electron. Lett. 27, 415 (1991)CrossRefGoogle Scholar
  625. 11.625.
    P. Becker, R. Brinkmann, M. Dinand, W. Sohler, H. Suche: Er-diffused Ti:LiNbO_3 waveguide laser of 1563 nm and 1576 nm emission wavelengths, Appl. Phys. Lett. 61, 1257 (1992)ADSCrossRefGoogle Scholar
  626. 11.626.
    J. Souriau, R. Romero, C. Borel, C. Wyon: Room-temperature diode-pumped continuous-wave SrY_4(SiO_4)_3O:Yb3+, Er3+ crystal laser at 1554 nm, Appl. Phys. Lett. 64, 1189 (1994)ADSCrossRefGoogle Scholar
  627. 11.627.
    U. Reimann: Sensibilisierung und Lasereigenschaften von Er 3+ in Yttrium-Aluminium-Granat und Lanthan-Strontium-Aluminium-Tantalat, Diploma Thesis (University of Hamburg, Hamburg 1991), in GermanGoogle Scholar
  628. 11.628.
    B. Dischler, W. Wettling: Investigation of the laser materials YAlO_3:Er and LiYF_4:Ho, J. Phys. D 17, 1115 (1984)ADSCrossRefGoogle Scholar
  629. 11.629.
    A.A. Kaminskii, V.A. Fedorov: Cascade stimulated emission in crystals with several metastable states of Ln 3+ ions, ed. by A.M. Prokhorov, I. Ursu (Springer, Berlin, Heidelberg 1986) p. 69Google Scholar
  630. 11.630.
    A.A. Kaminskii: Cascade laser generation by Er3+ ions in YAlO_3 crystals by the scheme 4 S 3/2 →4 I 9/2 →4 I 11/2 →4 I 13/2, Sov. Phys. Dokl. 27, 1039 (1982)ADSGoogle Scholar
  631. 11.631.
    M.J. Weber, M. Bass, G.A. Demars: Laser action and spectroscopic properties of Er3+ in YAlO_3, J. Appl. Phys. 42, 301 (1971)ADSCrossRefGoogle Scholar
  632. 11.632.
    M.J. Weber, M. Bass, G.A. Demars, K. Andringa, R.R. Monchamp: Stimulated emission at 1.663 μ m from Er3+ ions in YalO_3, IEEE J. Quantum Electron. 6, 654 (1970)ADSCrossRefGoogle Scholar
  633. 11.633.
    A.A. Kaminskii, T.I. Butaeva, A.O. Ivanow, I.V. Mochalov, A.G. Petrosyan, G.I. Rogov, V.A. Fedorov: New data on stimulated emission of crystals containing Er3+ and Ho3+ ions, Sov. Tech. Phys. Lett. 2, 308 (1976)Google Scholar
  634. 11.634.
    T. Andreae, D. Meschede, T.W. Hänsch: New CW laser lines in the Er:YAlO_3 crystal, Opt. Commun. 79, 211 (1990)ADSCrossRefGoogle Scholar
  635. 11.635.
    M. Dätwyler, W. Lüthy, H.P. Weber: New wavelengths of the YAlO_3:Er laser, IEEE J. Quantum Electron. 23, 158 (1987)ADSCrossRefGoogle Scholar
  636. 11.636.
    B. Schmaul, G. Huber, R. Clausen, B.H.T. Chai, P. LiKamWa, M. Bass: Er:LiYF_4 continuous wave cascade laser operation at 1620 nm and 2810 nm at room temperature, Appl. Phys. Lett. 62, 541 (1993)ADSCrossRefGoogle Scholar
  637. 11.637.
    S.L. Korableva, L.D. Ivanova, M.V. Petrov, A.M. Tkatchuk: Stimulated emission of Er3+ ions in LiYF_4 crystals, Sov. Phys. Tech. Phys. 26, 1521 (1981)Google Scholar
  638. 11.638.
    N.P. Barnes, R.E. Allen, L. Esterowitz, E.P. Chicklis, M.G. Knights, H.P. Jenssen: Operation of an Er:YLF laser at 1.73 μ m, IEEE J. Quantum Electron. 22, 337 (1986)ADSCrossRefGoogle Scholar
  639. 11.639.
    M.V. Petrov, A.M. Tkatchuk: Optical spectra and multifrequency stimulated emission of LiYF_4-Er3+ crystals, Opt. Spectrosc. 45, 81 (1978)ADSGoogle Scholar
  640. 11.640.
    R.D. Stultz, V. Leyva, K. Spariosu: Short pulse, high-repetition rate, passively Q-switched Er:yttrium-aluminum-garnet laser at 1.6 microns, Appl. Phys. Lett. 87, 241118 (2005)ADSCrossRefGoogle Scholar
  641. 11.641.
    G.M. Zverev, V.M. Garmash, A.M. Onischenko, V.A. Pashkov, A.A. Semenov, Y.M. Kolbatskov, A.I. Smirnov: Induced emission by trivalent erbium ions in crystals of yttrium-aluminium garnet, J. Appl. Spectrosc. (USSR) 21, 1467 (1974)ADSCrossRefGoogle Scholar
  642. 11.642.
    K. Spariosu, M. Birnbaum: Intracavity 1.549 μ m pumped 1.634 μ m Er:YAG lasers at 300 K, IEEE J. Quantum Electron. 30, 1044 (1994)ADSCrossRefGoogle Scholar
  643. 11.643.
    M.B. Camargo, R.D. Stultz, M. Birnbaum: Passive Q-switching of the Er3+:Y_3Al_5O_12 laser at 1.64 μ m, Appl. Phys. Lett. 66, 2940 (1995)ADSCrossRefGoogle Scholar
  644. 11.644.
    K. Spariosu, M. Birnbaum: Room-temperature 1.644 micron Er:YAG lasers, Adv. Solid-State Lasers, Vol. 13, ed. by L.L. Chase, A.A. Pinto (Opt. Soc. Am., Washington 1992) p. 127Google Scholar
  645. 11.645.
    K.O. White, S.A. Schleusener: Coincidence of Er:YAG laser emission with methane absorption at 1645.1 nm, Appl. Phys. Lett. 21, 419 (1972)ADSCrossRefGoogle Scholar
  646. 11.646.
    K. Spariosu, M. Birnbaum, B. Viana: Er3+:Y_3Al_5O_12 laser dynamics: Effects of upconversion, J. Opt. Soc. Am. B 11, 894 (1994)ADSCrossRefGoogle Scholar
  647. 11.647.
    R.C. Stoneman, A.I.R. Malm: High-Power Er:YAG Laser for Coherent Laser Radar, CLEO/IQEC and PhAST Tech. (Opt. Soc. Am., Washington 2004), CThZ6Google Scholar
  648. 11.648.
    D. Garbuzov, I. Kudryashov, M. Dubinskii: 110 W (0.9 J) pulsed power from resonantly diode-laser-pumped 1.6 μ m Er:YAG laser, Appl. Phys. Lett. 87, 121101 (2005)ADSCrossRefGoogle Scholar
  649. 11.649.
    J.R. Thornton, P.M. Rushworth, P.M. Kelly, R.W. McMillan, L.L. Harper: Proc. 4th Conf. Laser Technol. (Ann Arbor 1970), 1249Google Scholar
  650. 11.650.
    T. Schweizer, T. Jensen, E. Heumann, G. Huber: Spectroscopic properties and diode pumped 1.6 μ m laser performance in Yb-codoped Er:Y_3Al_5O_12 and Er:Y_2SiO_5, Opt. Commun. 118, 557 (1995)ADSCrossRefGoogle Scholar
  651. 11.651.
    A.A. Kaminskii, T.I. Butaeva, A.M. Kevorkov, V.A. Fedorov, A.G. Petrosyan, M.M. Gritsenko: New data on stimulated emission by crystals with high concentration of Ln3+ ions, Inorg. Mater. 12, 1238 (1976)Google Scholar
  652. 11.652.
    K. Spariosu, M. Birnbaum, M. Kokta: Room-temperature 1.643 μ m Er3+:Y_3Sc_2Ga_3O_12 (Er:YSGG) laser, Appl. Opt. 34, 8272 (1995)ADSCrossRefGoogle Scholar
  653. 11.653.
    A.A. Kaminskii, A.A. Pavlyuk, T.I. Butaeva, V.A. Fedorov, I.F. Balashov, V.A. Berenberg, V.V. Lyubchenko: Stimulated emission by subsidiary transitions of Ho3+ and Er3+-ions in KGd(WO_4)_2 crystals, Inorg. Mater. 13, 1251 (1977)Google Scholar
  654. 11.654.
    A.A. Kaminskii, A.A. Pavlyuk, A.I. Polyakov, V.V. Lyubchenko: A new lasing channel in a self-activated erbium crystal KEr(WO_4)_2, Sov. Phys. Dokl. 28, 154 (1983)ADSGoogle Scholar
  655. 11.655.
    N.V. Kuleshov, A.A. Lagatsky, V.G. Shcherbitsky, V.P. Mikhailov, E. Heumann, T. Jensen, A. Diening, G. Huber: CW laser performance of Yb and Er,Yb doped tungstates, Appl. Phys. B 64, 409 (1997)ADSCrossRefGoogle Scholar
  656. 11.656.
    A.A. Kaminskii, L.P. Kozeeva, A.A. Pavlyuk: Stimulated emission of Er3+ and Ho3+ ions in KLa(MoO_4)_2 crystals, Phys. Status Solidi (a) 83, K65 (1984)ADSCrossRefGoogle Scholar
  657. 11.657.
    A.A. Kaminskii: Stimulated emission spectroscopy of Ln3+ ions in tetragonal LiLuF_4 fluoride, Phys. Status Solidi (a) 97, K53 (1986)ADSCrossRefGoogle Scholar
  658. 11.658.
    A.A. Kaminskii, A.A. Markosyan, A.V. Pelevin, Y.A. Polyakova, S.E. Sarkisov, T.V. Uvarova: Luminescence properties and stimulated emission from Pr3+, Nd3+ and Er3+ ions in tetragonal lithium-lutecium fluoride, Inorg. Mater. 22, 773 (1986)Google Scholar
  659. 11.659.
    L. Fornasiero, K. Petermann, E. Heumann, G. Huber: Spectroscopic properties and laser emission of Er3+ in scandium silicates near 1.5 μ m, Opt. Mater. 10, 9 (1998)CrossRefGoogle Scholar
  660. 11.660.
    P. Burns, J. Dawes, P. Dekker, J. Piper, H. Jiang, J. Wang: CW diode-pumped microlaser operation at 1.5–1.6 μ m in Er, Yb:YCOB, IEEE Photonics Technol. Lett. 14, 1677 (2002)ADSCrossRefGoogle Scholar
  661. 11.661.
    P. Burns, J. Dawes, P. Dekker, J. Piper, H. Jiang, J. Wang: 250 mW continuous-wave output from Er,Yb:YCOB laser at 1.5 μ m, Advanced Solid State Photonics (Opt. Soc. Am., Washington 2003)Google Scholar
  662. 11.662.
    B. Denker, B. Galagan, L. Ivleva, V. Osiko, S. Sverchkov, I. Voronina, J.E. Hellstrom, G. Karlsson, F. Laurell: Luminescent and laser properties of Yb-Er:GdCa_4O(BO_3)_3: A new crystal for eye-safe 1.5 μ m lasers, Appl. Phys. B 79, 577 (2004)ADSCrossRefGoogle Scholar
  663. 11.663.
    S.L. Korableva, L.D. Livanova, M.V. Petrov, A.M. Tkatchuk: Stimulated emission of Er3+ ions in LiYF_4 crystals, Sov. Phys. Tech. Phys. 26, 1521 (1981)Google Scholar
  664. 11.664.
    A.M. Tkatchuk, M.V. Petrov, L.D. Livanova, S.L. Korableva: Pulsed-periodic 0.8503 μ m YLF:Er3+,Pr3+ laser, Opt. Spectrosc. (USSR) 54, 667 (1983)ADSGoogle Scholar
  665. 11.665.
    M.V. Petrov, A.M. Tkatchuk: Optical spectra and multifrequency stimulated emission of LiYF_4-Er3+ crystals, Opt. Spectrosc. (USSR) 45, 81 (1978)ADSGoogle Scholar
  666. 11.666.
    A.A. Kaminskii, A.A. Markosyan, A.V. Pelevin, Y.A. Polyakova, S.E. Sarkisov, T.V. Uvarova: Luminescence properties and stimulated emission from Pr3+, Nd3+ and Er3+ ions in tetragonal lithium-lutecium fluoride, Inorg. Mater. 22, 773 (1986)Google Scholar
  667. 11.667.
    A.A. Kaminskii: Luminescence and multiwave stimulated emission of Ho3+ and Er3+ ions in orthorhombic YAlO_3 crystals, Sov. Phys. Dokl. 31, 823 (1986)ADSGoogle Scholar
  668. 11.668.
    B.M. Antipenko, A.A. Mak, B.V. Sinitsyn, O.B. Raba, T.V. Uvarova: New excitation schemes for laser transitions, Sov. Phys. Tech. Phys. 27, 333 (1982)Google Scholar
  669. 11.669.
    B.M. Antipenko, V.A. Buchenkov, A.A. Nikitichev, B.P. Sobolev, A.I. Stepanov, L.K. Sukhareva, T.V. Uvarova: Optimization of a BaYb_2F_8:Er active medium, Sov. J. Quantum Electron. 16, 759 (1986)ADSCrossRefGoogle Scholar
  670. 11.670.
    B.M. Antipenko, A.A. Mak, O.B. Raba, L.K. Sukhareva, T.V. Uvarova: 2 μ m-range rare earth laser, Sov. Tech. Phys. Lett. 9, 227 (1983)Google Scholar
  671. 11.671.
    B.M. Antipenko, A.A. Mak, B.V. Nikolaev, O.B. Raba, K.B. Seiranyan, T.V. Uvarova: Analysis of laser situations in BaYb_2F_8:Er3+ with stepwise pumping schemes, Opt. Spectrosc. (USSR) 56, 296 (1984)ADSGoogle Scholar
  672. 11.672.
    M.S. OʼSullivan, J. Chrostowski, E. Desurvire, J.R. Simpson: High-power narrow-linewidth Er3+-doped fiber laser, Opt. Lett. 14, 438 (1989)ADSCrossRefGoogle Scholar
  673. 11.673.
    P.L. Scrivener, E.J. Tarbox, P.D. Maton: Narrow linewidth tunable operation of Er3+-doped single-mode fiber laser, Electron. Lett. 25, 549 (1989)CrossRefGoogle Scholar
  674. 11.674.
    V.P. Gapontsev, I.E. Samartsev: High-power fiber laser, Proc. Adv. Solid-State Lasers (Opt. Soc. Am., Washington 1990) p. 258Google Scholar
  675. 11.675.
    R. Wyatt, B.J. Ainslie, S.P. Craig: Efficient operation of array-pumped Er3+ doped silica fiber laser at 1.5 μ m, Electron. Lett. 24, 1362 (1988)ADSCrossRefGoogle Scholar
  676. 11.676.
    L. Reekie, I.M. Jauncie, S.B. Poole, D.N. Payne: Diode laser pumped operation of an Er3+-doped single mode fiber laser, Electron. Lett. 23, 1076 (1987)CrossRefGoogle Scholar
  677. 11.677.
    W.L. Barnes, P.R. Morkel, L. Reekie, D.N. Payne: High-quantum-efficiency Er3+ fiber lasers pumped at 980 nm, Opt. Lett. 14, 1002 (1989)ADSCrossRefGoogle Scholar
  678. 11.678.
    R. Wyatt: High-power broadly tunable erbium-doped silica fiber laser, Electron. Lett. 25, 1498 (1989)MathSciNetADSCrossRefGoogle Scholar
  679. 11.679.
    K. Susuki, Y. Kimura, M. Nakazawa: An 8 mW CW Er3+-doped fiber laser pumped by 1.46 μ m InGaAsP laser diodes, Jpn. J. Appl. Phys. 28, L1000 (1989)ADSCrossRefGoogle Scholar
  680. 11.680.
    Y. Kimura, K. Susuki, M. Nakazawa: Laser-diode-pumped mirror-free Er3+-doped fiber laser, Opt. Lett. 14, 999 (1989)ADSCrossRefGoogle Scholar
  681. 11.681.
    L. Cognolato, A. Gnazzo, B. Sordo, C. Bruschi: Tunable erbium-doped silica fiber ring laser source: Design and realization, J. Opt. Commun. 16, 122 (1995)CrossRefGoogle Scholar
  682. 11.682.
    J.L. Wagener, P.F. Wysocki, M.J.F. Digonnet, H.J. Shaw, D.J. Digiovanni: Effects of concentration and clusters in erbium-doped fiber lasers, Opt. Lett. 18, 2014 (1993)ADSCrossRefGoogle Scholar
  683. 11.683.
    W.L. Barnes, S.B. Poole, J.E. Townsend, L. Reekie, D.J. Taylor, D.N. Payne: Er3+ Yb3+ and Er3+ doped fiber lasers, J. Lightwave Technol. 7, 1462 (1989)ADSCrossRefGoogle Scholar
  684. 11.684.
    M.E. Fermann, D.C. Hanna, D.P. Shepherd, P.J. Suni, J.E. Townsend: Efficient operation of an Yb-sensitised Er fiber laser at 1.56 μ m, Electron. Lett. 24, 1135 (1988)CrossRefGoogle Scholar
  685. 11.685.
    D.C. Hanna, R.M. Percival, I.R. Perry, R.G. Smart, A.C. Tropper: Efficient operation of an Yb-sensitized Er fiber laser pumped in the 0.8 μ m region, Electron. Lett. 24, 1068 (1988)CrossRefGoogle Scholar
  686. 11.686.
    J.D. Minelli, W.L. Barnes, R.I. Laming, P.R. Morkel, J.E. Townsend, S.G. Grubb, D.N. Payne: Diode-array pumping of Er3+/Yb3+ co-doped fiber lasers and amplifiers, IEEE Photonics Technol. Lett. 5, 301 (1993)ADSCrossRefGoogle Scholar
  687. 11.687.
    J.T. Kringlebotn, P.R. Morkel, L. Reekie, J.-L. Archambault, D.N. Payne: Efficient diode-pumped single frequency erbium:ytterbium fiber laser, IEEE Photonics Technol. Lett. 5, 1162 (1993)ADSCrossRefGoogle Scholar
  688. 11.688.
    G.G. Vienne, J.E. Caplen, L. Dong, J.D. Minelly, J. Nilsson, D.N. Payne: Fabrication and characterization of Yb3+:Er3+ phosphosilicate fibers for lasers, J. Lightwave Technol. 16, 1990 (1998)ADSCrossRefGoogle Scholar
  689. 11.689.
    J.E. Townsend, W.L. Barnes, K.P. Jedrzejewski, S.G. Grubb: Yb3+ sensitized Er3+ doped silica optical fiber with ultrahigh transfer efficiency and gain, Electron. Lett. 27, 1958 (1991)CrossRefGoogle Scholar
  690. 11.690.
    J.J. Pan, Y. Shi: 166 mW single-frequency outpur power interactive fiber lasers with low noise, IEEE Photonics Technol. Lett. 11, 36 (1999)ADSCrossRefGoogle Scholar
  691. 11.691.
    P.P. Sorokin, M.J. Stevenson: Stimulated infrared emission from trivalent uranium, Phys. Rev. Lett. 5, 557 (1960)ADSCrossRefGoogle Scholar
  692. 11.692.
    Z.J. Kiss, R.C. Duncan: Pulsed and continuous optical maser action in CaF_2:Dy2+, Proceedings IRE (Corresp.) 50, 1531 (1962)Google Scholar
  693. 11.693.
    A. Yariv: Continuous operation of a CaF_2:Dy2+ optical maser, Proceedings IRE (Corresp.) 50, 1699 (1962)Google Scholar
  694. 11.694.
    L.F. Johnson, G.D. Boyd, K. Nassau: Optical maser characteristics of Tm3+ in CaWO_4, Proceedings IRE 50, 86 (1962)CrossRefGoogle Scholar
  695. 11.695.
    L.F. Johnson, G.D. Boyd, K. Nassau: Optical maser characteristics of Ho3+ in CaWO_4, Proceedings IRE 50, 87 (1962)CrossRefGoogle Scholar
  696. 11.696.
    M. Robinson, P.D. Devor: Thermal switching of laser emission of Er3+ at 2.69 μ m and Tm3+ at 1.86 μ m in mixed crystals of CaF_2:ErF_3:TmF_3*, Appl. Phys. Lett. 10, 167 (1967)ADSCrossRefGoogle Scholar
  697. 11.697.
    A.A. Kaminskii: Laser Crystals (Springer, Berlin, Heidelberg 1990) p. 456Google Scholar
  698. 11.698.
    G. Huber, E.W. Duczynski, K. Petermann: Laser pumping of Ho-, Tm-, Er-doped garnet lasers at room temperature, IEEE J. Quantum Electron. 24, 920 (1988)ADSCrossRefGoogle Scholar
  699. 11.699.
    T.Y. Fan, G. Huber, R.L. Byer, P. Mitzscherlich: Spectroscopy and diode laser-pumped operation of Tm, Ho:YAG, IEEE J. Quantum Electron. 24, 924 (1988)ADSCrossRefGoogle Scholar
  700. 11.700.
    R.C. Stoneman, L. Esterowitz: Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG CW lasers, Opt. Lett. 15, 486 (1990)ADSCrossRefGoogle Scholar
  701. 11.701.
    J.F. Pinto, L. Esterowitz, G.H. Rosenblatt: Tm3+:YLF laser continuously tunable between 2.20 and 2.46 μ m, Opt. Lett. 19, 883 (1994)ADSCrossRefGoogle Scholar
  702. 11.702.
    K.L. Vodopyanov, L.A. Kulevskii, P.P. Pashinin, A.F. Umyskov, I.A. Shcherbakov: Bandwidth-limited picosecond pulses from a YSGG:Cr3+:Er3+ laser (λ =2.79  μm) with active mode locking, Kvantovaya Elektron. 14, 1219 (1987), English transl.: Sov. J. Quantum Electron. 17, 776 (1987)Google Scholar
  703. 11.703.
    E. Sorokin, I.T. Sorokina, A. Unterhuber, E. Wintner, A.I. Zagumennyi, I.A. Shcherbabov, V. Carozza, A. Toncelli, M. Tonelli: A novel CW tunable and mode-locked 2 μ m Cr,Tm,Ho:YSGG:GSAG laser, OSA Proc. Adv. Solid State Lasers, Vol. 19, ed. by W.R. Bosenberg, M.M. Fejer (Opt. Soc. Am., Washington 1998) pp. 197–200Google Scholar
  704. 11.704.
    M.J. Weber: Handbook of Lasers (CRC, Boca Raton 2000) p. 1198CrossRefGoogle Scholar
  705. 11.705.
    J.M.F. van Dijk, M.F.H. Schuurmans: On the nonradiative and radiative decay rates and a modified exponential energy gap law for 4f-4f transitions in rare-earth ions, J. Chem. Phys. 78, 5317 (1983)ADSCrossRefGoogle Scholar
  706. 11.706.
    M.J.F. Digonnet (Ed.): Rare-Earth-Doped Fiber Lasers and Amplifiers, 2nd edn. (Marcel Dekker, New York 2001)Google Scholar
  707. 11.707.
    I.T. Sorokina: Crystalline mid-infrared lasers. In: Solid-State Mid-Infrared Laser Sources, Topics in Applied Physics, Vol. 89, ed. by I.T. Sorokina, K.L. Vodopyanov (Springer, Berlin, Heidelberg 2003) pp. 255–349CrossRefGoogle Scholar
  708. 11.708.
    M. Pollnau, S.D. Jackson: Mid-infrared fiber lasers. In: Solid-State Mid-Infrared Laser Sources, Topics in Applied Physics, Vol. 89, ed. by I.T. Sorokina, K.L. Vodopyanov (Springer, Berlin, Heidelberg 2003) pp. 219–253CrossRefGoogle Scholar
  709. 11.709.
    L.A. Riseberg, H.W. Moos: Multiphonon orbit-lattice relaxation of excited states of rare-earth ions in crystals, Phys. Rev. 174, 429 (1968)ADSCrossRefGoogle Scholar
  710. 11.710.
    H.U. Güdel, M. Pollnau: Near-infrared to visible photon upconversion processes in lanthanide doped chloride, bromide and iodide lattices, J. Alloys Compd. 303-304, 307 (2000)CrossRefGoogle Scholar
  711. 11.711.
    M. Pollnau, P.J. Hardman, M.A. Kern, W.A. Clarkson, D.C. Hanna: Upconversion-induced heat generation and thermal lensing in Nd:YLF and Nd:YAG, Phys. Rev. B 58, 16076 (1998)ADSCrossRefGoogle Scholar
  712. 11.712.
    B.J. Ainslie, S.P. Craig, S.T. Davey: The absorption and fluorescence spectra of rare earth ions in silica-based monomode fiber, J. Lightwave Technol. 6, 287 (1988)ADSCrossRefGoogle Scholar
  713. 11.713.
    R. Reisfeld, M. Eyal: Possible ways of relaxations for excited states of rare earth ions in amorphous media, J. Phys. (Paris) 46, C349 (1985)Google Scholar
  714. 11.714.
    S.D. Jackson, T.A. King: CW operation of a 1.064 μ m pumped Tm-Ho-doped silica fiber laser, IEEE J. Quantum Electron. 34, 1578 (1998)ADSCrossRefGoogle Scholar
  715. 11.715.
    O. Humbach, H. Fabian, U. Grzesik, U. Haken, W. Heitmann: Analysis of OH absorption bands in synthetic silica, J. Non-Cryst. Solids 203, 19 (1996)ADSCrossRefGoogle Scholar
  716. 11.716.
    D.C. Tran, G.H. Sigel Jr., B. Bendow: Heavy metal fluoride glasses and fibers: A review, J. Lightwave Technol. 2, 566 (1984)ADSCrossRefGoogle Scholar
  717. 11.717.
    P.W. France, M.G. Drexhage, J.M. Parker, M.W. Moore, S.F. Carter, J.V. Wright: Fluoride Glass Optical Fibers (Blackie, Glasgow 1990)CrossRefGoogle Scholar
  718. 11.718.
    M. Poulain, M. Poulain, J. Lucas, P. Brun: Verres fluorés au tetrafluorure de zirconium; propriétés optiques dʼun verre dopé au Nd3+, Mater. Res. Bull. 10, 243 (1974)CrossRefGoogle Scholar
  719. 11.719.
    S.T. Davey, P.W. France: Rare earth doped fluorozirconate glasses for fiber devices, BT Technol. J. 7, 58 (1989)Google Scholar
  720. 11.720.
    M. Monerie, F. Alard, G. Maze: Fabrication and characterisation of fluoride-glass single-mode fibers, Electron. Lett. 21, 1179 (1985)ADSCrossRefGoogle Scholar
  721. 11.721.
    L. Wetenkamp, G.F. West, H. Többen: Optical properties of rare earth-doped ZBLAN glasses, J. Non-Cryst. Solids 140, 35 (1992)ADSCrossRefGoogle Scholar
  722. 11.722.
    L. Wetenkamp: Charakterisierung von laseraktiv dotierten Schwermetallfluorid-Gläsern und Faserlasern. Ph.D. Thesis (Technical University of Braunschweig, Braunschweig 1991), in GermanGoogle Scholar
  723. 11.723.
    Y.D. Huang, M. Mortier, F. Auzel: Stark level analysis for Er3+-doped ZBLAN glass, Opt. Mater. 17, 501 (2001)CrossRefGoogle Scholar
  724. 11.724.
    X. Zhu, N. Peyghambarian: High-power ZBLAN glass fiber lasers: Review and prospect, Advances in OptoElectronics, Vol. 2010 (Hindawi Publishing 2010)Google Scholar
  725. 11.725.
    D.S. Knowles, H.P. Jenssen: Upconversion versus Pr-deactivation for efficient 3 μ m laser operation in Er, IEEE J. Quantum Electron. 28, 1197 (1992)ADSCrossRefGoogle Scholar
  726. 11.726.
    T. Jensen, A. Diening, G. Huber, B.H.T. Chai: Investigation of diode-pumped 2.8 μ m Er:LiYF_4 lasers with various doping levels, Opt. Lett. 21, 585 (1996)ADSCrossRefGoogle Scholar
  727. 11.727.
    M.P. Hehlen, K. Krämer, H.U. Güdel, R.A. McFarlane, R.N. Schwartz: Upconversion in Er3+-dimer systems: Trends within the series Cs_3Er_2X_9 (X=Cl,Br,I), Phys. Rev. B 49, 12475 (1994)ADSCrossRefGoogle Scholar
  728. 11.728.
    L. Isaenko, A. Yelisseyev, A. Tkachuk, S. Ivanova, S. Vatnik, A. Merkulov, S. Payne, R. Page, M. Nostrand: New laser crystals based on KPb_2Cl_5 for IR region, Mater. Sci. Eng. B 81, 188 (2001)CrossRefGoogle Scholar
  729. 11.729.
    K. Rademaker, E. Heumann, G. Huber, S.A. Payne, W.F. Krupke, L.I. Isaenko, A. Burger: Laser activity at 1.18, 1.07, and 0.97 μ m in the low-phonon-energy hosts KPb_2Br_5 and RbPb_2Br_5 doped with Nd3+, Opt. Lett. 30, 729 (2005)ADSCrossRefGoogle Scholar
  730. 11.730.
    K. Rademaker, S.A. Payne, G. Huber, L.I. Isaenko, E. Osiak: Optical pump-probe processes in Nd3+-doped KPb_2Br_5, RbPb_2Br_5, KPb_2Cl_5, J. Opt. Soc. Am. B 22, 2610 (2005)ADSCrossRefGoogle Scholar
  731. 11.731.
    P.N. Kumta, S.H. Risbud: Rare-earth chalcogenides – an emerging class of optical materials, J. Mater. Sci. 29, 1135 (1994)ADSCrossRefGoogle Scholar
  732. 11.732.
    J.S. Sanghera, J. Heo, J.D. Mackenzie: Chalcohalide glasses, J. Non-Cryst. Solids 103, 155 (1988)ADSCrossRefGoogle Scholar
  733. 11.733.
    L.D. DeLoach, R.H. Page, G.D. Wilke, S.A. Payne, W.F. Krupke: Transition metal-doped zinc chalcogenides: Spectroscopy and laser demonstration of a new class of gain media, IEEE J. Quantum Electron. 32, 885 (1996)ADSCrossRefGoogle Scholar
  734. 11.734.
    L.B. Shaw, B. Cole, P.A. Thielen, J.S. Sanghera, I.D. Aggarwal: Mid-wave IR and long-wave IR laser potential of rare-earth doped chalcogenide glass fiber, IEEE J. Quantum Electron. 48, 1127 (2001)ADSCrossRefGoogle Scholar
  735. 11.735.
    T. Schweizer: Rare-earth-doped gallium lanthanum sulphide glasses for mid-infrared fiber lasers. Ph.D. Thesis (University of Hamburg, Hamburg 1998)Google Scholar
  736. 11.736.
    Y.D. West, T. Schweizer, D.J. Brady, D.W. Hewak: Gallium lanthanum sulphide fibers for infrared transmission, Fiber Integr. Opt. 19, 229 (2000)ADSCrossRefGoogle Scholar
  737. 11.737.
    J. Heo, Y.B. Shin: Absorption and mid-infrared emission spectroscopy of Dy3+ in Ge-As (or Ga)-S glasses, J. Non-Cryst. Solids 196, 162 (1996)ADSCrossRefGoogle Scholar
  738. 11.738.
    J.R. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Misawa, M. Prabhu, J. Xu, K. Ueda, H. Yagi, T. Yanagitani, A.A. Kaminskii, A. Kudryashov: 72 W Nd:Y_3Al_5O_12 ceramic laser, Appl. Phys. Lett. 78, 3586 (2001)ADSCrossRefGoogle Scholar
  739. 11.739.
    J. Lu, J. Lu, T. Murai, K. Takaichi, T. Uematsu, K. Ueda, H. Yagi, T. Yanagitani, T. Works, A.A. Kaminskii: Optical properties and highly efficient laser oscillation of Nd:Y_2O_3 ceramics, Conf. Lasers Electroopt. Tech. Dig. (Opt. Soc. Am., Washington 2002)Google Scholar
  740. 11.740.
    B.N. Samson, P.A. Tick, N.F. Borrelli: Efficient neodymium-doped glass-ceramic fiber laser and amplifier, Opt. Lett. 26, 145 (2001)ADSCrossRefGoogle Scholar
  741. 11.741.
    M. Pollnau: Analysis of heat generation and thermal lensing in erbium 3 μ m lasers, IEEE J. Quantum Electron. 39, 350 (2003)ADSCrossRefGoogle Scholar
  742. 11.742.
    M.K. Davis, M.J.F. Digonnet, R.H. Pantell: Thermal effects in doped fibers, J. Lightwave Technol 16, 1013 (1998)ADSCrossRefGoogle Scholar
  743. 11.743.
    H. Po, E. Snitzer, R. Tumminelli, L. Zenteno, F. Hakimi, N.M. Cho, T. Haw: Doubly clad high brightness Nd fiber laser pump by GaAlAs phased array, Proc. Opt. Fiber Commun. Conf. (Opt. Soc. Am., Washington 1989)Google Scholar
  744. 11.744.
    I.N. Duling III., W.K. Burns, L. Goldberg: High-power superfluorescent fiber source, Opt. Lett. 15, 33 (1990)ADSCrossRefGoogle Scholar
  745. 11.745.
    J.D. Minelly, W.L. Barnes, R.I. Laming, P.R. Morkel, J.E. Townsend, S.G. Grubb, D.N. Payne: Diode-array pumping of Er3+/Yb3+ codoped fiber lasers and amplifiers, IEEE Photonics Technol. Lett. 5, 301 (1993)ADSCrossRefGoogle Scholar
  746. 11.746.
    H.M. Pask, J.L. Archambault, D.C. Hanna, L. Reekie, P.S.J. Russell, J.E. Townsend, A.C. Tropper: Operation of cladding-pumped Yb3+-doped silica fiber lasers in 1 μ m region, Electron. Lett. 30, 863 (1994)ADSCrossRefGoogle Scholar
  747. 11.747.
    L. Zenteno: High-power double-clad fiber lasers, J. Lightwave Technol. 11, 1435 (1993)ADSCrossRefGoogle Scholar
  748. 11.748.
    D.C. Brown, H.J. Hoffman: Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers, IEEE J. Quantum Electron. 37, 207 (2001)ADSCrossRefGoogle Scholar
  749. 11.749.
    N.A. Brilliant, K. Lagonik: Thermal effects in a dual-clad ytterbium fiber laser, Opt. Lett. 26, 1669 (2001)ADSCrossRefGoogle Scholar
  750. 11.750.
    S.D. Jackson, M. Pollnau, J. Li: Diode pumped erbium cascade fiber lasers, IEEE J. Quantum Electron. 47, 471 (2011)ADSCrossRefGoogle Scholar
  751. 11.751.
    R.M. Percival, S.F. Carter, D. Szebesta, S.T. Davey, W.A. Stallard: Thulium-doped monomode fluoride fiber laser broadly tunable from 2.25 to 2.5 μ m, Electron. Lett. 27, 1912 (1991)CrossRefGoogle Scholar
  752. 11.752.
    J.A. Caird, L.G. DeShazer, J. Nella: Characteristics of room-temperature 2.3 μ m laser emission from Tm3+ in YAG and YAlO_3, IEEE J. Quantum Electron. 11, 874 (1975)ADSCrossRefGoogle Scholar
  753. 11.753.
    V.A. Smirnov, I.A. Shcherbakov: Rare-earth scandium chromium garnets as active media for solid-state lasers, IEEE J. Quantum Electron. 24, 949 (1988)ADSCrossRefGoogle Scholar
  754. 11.754.
    I.A. Shcherbakov: Optically dense active media for solid-state lasers, IEEE J. Quantum Electron. 24, 979 (1988)ADSCrossRefGoogle Scholar
  755. 11.755.
    B.M. Antipenko: Cross-relaxation schemes for pumping laser transitions, Zh. Tekh. Phys. 54, 385 (1984), English transl.: Sov. Phys.-Tech. Phys. 29, 228 (1984)Google Scholar
  756. 11.756.
    G.J. Kintz, R. Allen, L. Esterowitz: CW laser emission at 2.02 μ m from diode-pumped Tm3+:YAG at room temperature, Conf. Lasers Electroopt. Tech. Dig (Opt. Soc. Am., Washington 1988)Google Scholar
  757. 11.757.
    T.J. Kane, T.S. Kubo: Diode-pumped single-frequency lasers and Q-switched laser using Tm:YAG and Tm,Ho:YAG, OSA Proc. Adv. Solid-State Lasers 6, 136–139 (1990)ADSGoogle Scholar
  758. 11.758.
    R.A. Hayward, W.A. Clarkson, D.C. Hanna: High-power diode-pumped room-temperature Tm:YAG and intracavity-pumped Ho:YAG lasers, Adv. Solid-State Lasers, Vol. 34, ed. by H. Injeyan, U. Keller, C. Marshall (Opt. Soc. Am., Washington 2000) pp. 90–94Google Scholar
  759. 11.759.
    A. Dergachev, K. Wall, P.F. Moulton: A CW side-pumped Tm:YLF laser, Adv. Solid-State Lasers, Vol. 68, ed. by M.E. Fermann, L.R. Marshall (Opt. Soc. Am., Washington 2002) pp. 343–350Google Scholar
  760. 11.760.
    P.A. Budni, M.L. Lemons, J.R. Mosto, E.P. Chicklis: High-power/high-brightness diode-pumped 1.9 μ m thulium and resonantly pumped 2.1 μ m holmium lasers, IEEE J. Select. Top. Quantum Electron. 6, 629 (2000)CrossRefGoogle Scholar
  761. 11.761.
    S. So, J.I. Mackenzie, D.P. Shepherd, W.A. Clarkson, J.G. Betterton, E.K. Gordon: A power-scaling strategy for longitudinally diode-pumped Tm:YLF lasers, Appl. Phys. B 84, 389 (2006)ADSCrossRefGoogle Scholar
  762. 11.762.
    E.C. Honea, R.J. Beach, S.B. Sutton, J.A. Speth, S.C. Mitchell, J.A. Skidmore, M.A. Emanuel, S.A. Payne: 115 W Tm:YAG diode-pumped solid-state laser, IEEE J. Quantum Electron. 33, 1592 (1997)ADSCrossRefGoogle Scholar
  763. 11.763.
    K.S. Lai, P.B. Phua, R.F. Wu, Y.L. Lim, E. Lau, S.W. Toh, B.T. Toh, A. Chng: 120 W continuous-wave diode-pumped Tm:YAG laser, Opt. Lett. 25, 1591 (2000)ADSCrossRefGoogle Scholar
  764. 11.764.
    C.P. Wyss, W. Lüthy, H.P. Weber, V.I. Vlasov, Y.D. Zavartsev, P.A. Studenikin, A.I. Zagumennyi, I.A. Shcherbakov: Emission properties of a Tm3+:GdVO_4 microchip laser at 1.9 μ m, 120 W continuous-wave diode-pumped Tm:YAG laser, J. Appl. Phys. B 67, 1–4 (1998)Google Scholar
  765. 11.765.
    N. Berner, A. Diening, E. Heumann, G. Huber, A. Voss, M. Karszewski, A. Giesen: Tm:YAG: A comparison between end pumped laser-rods and the ‘thin-disk’-setup, Adv. Solid-State Lasers, Vol. 26, ed. by M.M. Fejer, H. Injeyan, U. Keller (Opt. Soc. Am., Washington 1999) p. 463Google Scholar
  766. 11.766.
    P. Koopmann, R. Peters, K. Petermann, G. Huber: Crystal growth, spectroscopy, and highly efficient laser operation of thulium-doped Lu2O3 around 2 μ m, Appl. Phys. B 102, 19 (2011)ADSCrossRefGoogle Scholar
  767. 11.767.
    P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, G. Huber: Efficient diode-pumped laser operation of Tm:Lu2O3 around 2 μ m, Opt. Lett. 36, 948 (2011)ADSCrossRefGoogle Scholar
  768. 11.768.
    F. Cornacchia, D. Parisi, C. Bernardini, A. Toncelli, M. Tonelli: Efficient, diode-pumped Tm3+:BaY_2F_8 vibronic laser, Opt. Express 12, 1982 (2004)ADSCrossRefGoogle Scholar
  769. 11.769.
    R.C. Stoneman, L. Esterowitz: Efficient, broadly tunable, laser-pumped Tm:YAG and Tm:YSGG CW lasers, Opt. Lett. 15, 486 (1990)ADSCrossRefGoogle Scholar
  770. 11.770.
    R.C. Stoneman, L. Esterowitz: Efficient 1.94 μ m Tm:YALO laser, IEEE J. Select. Top. Quantum Electron. 1, 78–80 (1995)CrossRefGoogle Scholar
  771. 11.771.
    L. Fornasiero, N. Berner, B.-M. Dicks, E. Mix, V. Peters, K. Petermann, G. Huber: Broadly tunable laser emission from Tm:Y_2O_3 and Tm:Sc_2O_3 at 2 μ m. In: Adv. Solid-State Lasers, Vol. 26, ed. by M.M. Fejer, H. Injeyan, U. Keller (Opt. Soc. Am., Washington 1999) pp. 450–453Google Scholar
  772. 11.772.
    P. Camy, J.L. Doualan, S. Renard, A. Braud, V. Menard, R. Moncorgé: Tm3+:CaF_2 for 1.9 μ m laser operation, Opt. Commun. 236, 395 (2004)ADSCrossRefGoogle Scholar
  773. 11.773.
    G. Galzerano, F. Cornacchia, D. Parisi, A. Toncelli, M. Tonelli, P. Laporta: Widely tunable 1.94 μ m Tm:BaY_2F_8 laser, Opt. Lett. 30, 854 (2005)ADSCrossRefGoogle Scholar
  774. 11.774.
    E. Sorokin, A.N. Alpatiev, I.T. Sorokina, A.I. Zagumennyi, I.A. Shcherbakov: Tunable efficient continuous-wave room-temperature Tm3+:GdVO_4 laser, Adv. Solid-State Lasers, Vol. 68, ed. by M.E. Fermann, L.R. Marshall (Opt. Soc. Am., Washington 2002) pp. 347–350Google Scholar
  775. 11.775.
    X. Mateos, J. Liu, H. Zhang, J. Wang, M. Jiang, U. Griebner, V. Petrov: Continuous-wave and tunable laser operation of Tm:LuVO_4 near 1.9 μ m under Ti:sapphire and diode laser pumping, Phys. Status Solidi (a) 203, R19 (2006)ADSCrossRefGoogle Scholar
  776. 11.776.
    V. Petrov, F. Güell, J. Massons, J. Gavaldà, R.M. Solé, M. Aguilo, F. Díaz, U. Griebner: Efficient tunable laser operation of Tm:KGd(WO_4)_2 in the continuous-wave regime at room temperature, IEEE J. Quantum Electron. 40, 1244 (2004)ADSCrossRefGoogle Scholar
  777. 11.777.
    J.M. Cano-Torres, C. Zaldo, M.D. Serrano, V. Petrov, M. Rico, X. Mateos, J. Liu, U. Griebner, F.J. Valle, M. Galan, G. Viera: Broadly tunable operation of Tm3+ in locally disordered NaGd(WO_4)_2 near 2 microns, Europhoton Conf. (European Physical Society, Mulhouse 2006), WeD4Google Scholar
  778. 11.778.
    J.D. Kmetec, T.S. Kubo, T.J. Kane, C.J. Grund: Laser performance of diode-pumped thulium-doped Y_3Al_5O_12 (Y,Lu)_3Al_5O_12, and Lu_3Al_3O_12 crystals, Opt. Lett. 19, 186 (1994)ADSCrossRefGoogle Scholar
  779. 11.779.
    H. Saito, S. Chaddha, R.S.F. Chang, N. Djeu: Efficient 1.94 μ m Tm3+ laser in YVO_4 host, Opt. Lett. 17, 189 (1992)ADSCrossRefGoogle Scholar
  780. 11.780.
    S.N. Bagaev, S.M. Vatnik, A.P. Maiorov, A.A. Pavlyuk, D.V. Plakushchev: The spectroscopy and lasing of monoclinic Tm:KY(WO_4)_2, Quantum Electron. 30, 310 (2000), transl. from Kvantovaya Elektronika 30, 310 (2000)ADSCrossRef