Improving Text Segmentation with Non-systematic Semantic Relation

  • Viet Cuong Nguyen
  • Le Minh Nguyen
  • Akira Shimazu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6608)

Abstract

Text segmentation is a fundamental problem in natural language processing, which has application in information retrieval, question answering, and text summarization. Almost previous works on unsupervised text segmentation are based on the assumption of lexical cohesion, which is indicated by relations between words in the two units of text. However, they only take into account the reiteration, which is a category of lexical cohesion, such as word repetition, synonym or superordinate. In this research, we investigate the non-systematic semantic relation, which is classified as collocation in lexical cohesion. This relation holds between two words or phrases in a discourse when they pertain to a particular theme or topic. This relation has been recognized via a topic model, which is, in turn, acquired from a large collection of texts. The experimental results on the public dataset show the advantages of our approach in comparison to the available unsupervised approaches.

Keywords

text segmentation lexical cohesion topic modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barzilay, R., Elhadad, M.: Using lexical chains for text summarization. In: Proceedings of ISTS 1997, Madrid, Spain, pp. 10–17 (1997)Google Scholar
  2. 2.
    Beeferman, D., Berger, A., Lafferty, J.: Statistical models for text segmentation. Machine Learning 34(1-3), 177–210 (1999)CrossRefMATHGoogle Scholar
  3. 3.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. Machine Learning Research 3, 993–1022 (2003)MATHGoogle Scholar
  4. 4.
    Choi, F.Y.Y.: Advances in domain independent linear text segmentation. In: Proceedings of NAACL 2000, Seattle, USA, pp. 26–33 (2000)Google Scholar
  5. 5.
    Choi, F.Y.Y., Wiemer-Hastings, P., Moore, J.: Latent semantic analysis for text segmentation. In: Lee, L., Harman, D. (eds.) Proceedings of EMNLP 2001, pp. 109–117 (2001)Google Scholar
  6. 6.
    Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by latent semantic analysis. The American Society for Information Science 41, 391–407 (1990)CrossRefGoogle Scholar
  7. 7.
    Eisenstein, J., Barzilay, R.: Bayesian unsupervised topic segmentation. In: Proceedings of EMNLP 2008, Honolulu, Hawaii, pp. 334–343 (2008)Google Scholar
  8. 8.
    Ferret, O.: Finding document topics for improving topic segmentation. In: Proceedings of ACL 2007, Prague, Czech Republic, pp. 480–487 (2007)Google Scholar
  9. 9.
    Griffiths, T.L., Steyvers, M.: Finding scientific topics. Proceedings of the National Academy of Sciences 101(suppl. 1), 5228–5235 (2004)CrossRefGoogle Scholar
  10. 10.
    Halliday, M.A.K., Hasan, R.: Cohesion in English. Longman Pub. Group, Harlow (1976)Google Scholar
  11. 11.
    Hearst, M.A.: Multi-paragraph segmentation of expository text. In: Proceedings of ACL 1994, Las Cruces, New Mexico, USA, pp. 9–16 (1994)Google Scholar
  12. 12.
    Heinrich, G.: Parameter estimation for text analysis. Tech. rep., University of Leipzig, Germany (2005)Google Scholar
  13. 13.
    Hofmann, T.: Probabilistic latent semantic indexing. In: Proceedings of SIGIR 1999, pp. 50–57 (1999)Google Scholar
  14. 14.
    Ji, X., Zha, H.: Domain-independent text segmentation using anisotropic diffusion and dynamic programming. In: Proceedings of SIGIR 2003, Toronto, Canada, pp. 322–329 (2003)Google Scholar
  15. 15.
    Jurafsky, D., Martin, J.H.: Speech and Language Processing, 2nd edn. Prentice Hall, Englewood Cliffs (2008)Google Scholar
  16. 16.
    Malioutov, I., Barzilay, R.: Minimum cut model for spoken lecture segmentation. In: Proceedings of COLING-ACL 2006, Sydney, Australia, pp. 25–32 (2006)Google Scholar
  17. 17.
    Manning, C.D., Schuetze, H.: Foundations of Statistical Natural Language Processing. The MIT Press, Cambridge (1999)Google Scholar
  18. 18.
    Misra, H., Yvon, F., Jose, J.M., Cappe, O.: Text segmentation via topic modeling: an analytical study. In: Proceedings of CIKM 2009, pp. 1553–1556 (2009)Google Scholar
  19. 19.
    Morris, J., Hirst, G.: Lexical cohesion computed by thesaural relations as an indicator of the structure of text. Computational Linguistics 17(1), 21–48 (1991)Google Scholar
  20. 20.
    Otterbacher, J., Radev, D., Kareem, O.: Hierarchical summarization for delivering information to mobile devices. Information Processing and Management 44(2), 931–947 (2008)CrossRefGoogle Scholar
  21. 21.
    Pevzner, L., Hearst, M.A.: A critique and improvement of an evaluation metric for text segmentation. Computational Linguistics 28(1), 19–36 (2002)CrossRefGoogle Scholar
  22. 22.
    Reynar, J.C.: Topic Segmentation: Algorithms and Applications. Ph.D. thesis, University of Pennsylvania (1998)Google Scholar
  23. 23.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)CrossRefGoogle Scholar
  24. 24.
    Utiyama, M., Isahara, H.: A statistical model for domain-independent text segmentation. In: Proceedings of ACL 2001, Toulouse, France, pp. 499–506 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Viet Cuong Nguyen
    • 1
  • Le Minh Nguyen
    • 1
  • Akira Shimazu
    • 1
  1. 1.School of Information ScienceJapan Advanced Institute of Science and TechnologyNomiJapan

Personalised recommendations