Advertisement

String Theory, Dark Energy and Varying Couplings

  • Marco ZagermannEmail author
Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP)

Abstract

I review the difficulties of some recent attempts to find stabilized string theory vacua with positive cosmological constant at tree level. Whereas models with energy momentum tensors satisfying the null energy condition (NEC) and conformally Ricci-flat internal spaces are easily shown to admit at most short transient periods of accelerated expansion, the situation is more complex in the presence of NEC-violating sources such as orientifold planes and more general curved compact spaces. We also comment on some recent discussions in the context of varying fundamental couplings in some of these string compactifications.

Keywords

Energy Momentum Tensor Warp Factor Gravitino Mass Null Energy Condition Modulus Stabilization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

It is a pleasure to thank my collaborators for the stimulating joint work on refs. [9; 10; 11; 44; 4] on which this contribution is mainly based, as well as the Organizers of the JENAM 2010 Workshop for setting up this interesting meeting. This work was supported by the German Research Foundation (DFG) within the Emmy Noether Program (Grant number ZA 279/1-2) and the Cluster of Excellence “QUEST”.

References

  1. 1.
    G. Aldazabal and A. Font, JHEP 0802 (2008) 086 [arXiv:0712.1021].Google Scholar
  2. 2.
    D. Andriot, E. Goi, R. Minasian and M. Petrini, arXiv:1003.3774.Google Scholar
  3. 3.
    V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, JHEP 0503 (2005) 007 [arXiv: hep-th/0502058].Google Scholar
  4. 4.
    J. Blaback, U.H. Danielsson, D. Junghans, T. Van Riet, T. Wrase and M. Zagermann, arXiv:1009.1877.Google Scholar
  5. 5.
    R. Blumenhagen, B. Kors, D. Lust and S. Stieberger, Phys. Rept. 445 (2007) 1 [arXiv: hep-th/0610327].MathSciNetCrossRefGoogle Scholar
  6. 6.
    C.P. Burgess, A. Maharana and F. Quevedo, arXiv:1005.1199.Google Scholar
  7. 7.
    P.G. Camara, A. Font and L.E. Ibanez, JHEP 0509 (2005) 013 [arXiv:hep-th/0506066].Google Scholar
  8. 8.
    D. Cassani and A.K. Kashani-Poor, Nucl. Phys. B817 (2009) 25 [arXiv:0901.4251].MathSciNetGoogle Scholar
  9. 9.
    C. Caviezel et al., Class. Quant. Grav. 26 (2009) 025014 [arXiv:0806.3458].MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    C. Caviezel et al., JHEP 0904 (2009) 010 [arXiv:0812.3551].Google Scholar
  11. 11.
    C. Caviezel, T. Wrase and M. Zagermann, JHEP 1004 (2010) 011 [arXiv:0912.3287].Google Scholar
  12. 12.
    L. Covi et al., JHEP 0806 (2008) 057 [arXiv:0804.1073].Google Scholar
  13. 13.
    G. Dall’Agata, G. Villadoro and F. Zwirner, JHEP 0908 (2009) 018 [arXiv:0906.0370].Google Scholar
  14. 14.
    U.H. Danielsson, S.S. Haque, G. Shiu and T. Van Riet, JHEP 0909 (2009) 114 [arXiv: 0907.2041].Google Scholar
  15. 15.
    U.H. Danielsson, P. Koerber and T. Van Riet, JHEP 1005 (2010) 090 [arXiv:1003.3590].Google Scholar
  16. 16.
    B. de Carlos, A. Guarino and J.M. Moreno, JHEP 1001 (2010) 012 [arXiv:0907.5580].Google Scholar
  17. 17.
    B. de Carlos, A. Guarino and J.M. Moreno, JHEP 1002 (2010) 076 [arXiv:0911.2876].Google Scholar
  18. 18.
    F. Denef, M.R. Douglas and S. Kachru, Ann. Rev. Nucl. Part. Sci. 57 (2007) 119 [arXiv: hep-th/0701050].ADSCrossRefGoogle Scholar
  19. 19.
    B. de Wit, D.J. Smit and N.D. Hari Dass, Nucl. Phys. B283 (1987) 165.ADSCrossRefGoogle Scholar
  20. 20.
    O. DeWolfe and S.B. Giddings, Phys. Rev. D67 (2003) 066008 [arXiv:hep-th/0208123].MathSciNetGoogle Scholar
  21. 21.
    O. DeWolfe, A. Giryavets, S. Kachru and W. Taylor, JHEP 0507 (2005) 066 [arXiv: hep-th/0505160].Google Scholar
  22. 22.
    G. Dibitetto, R. Linares and D. Roest, Phys. Lett. B688 (2010) 96 [arXiv:1001.3982].MathSciNetADSGoogle Scholar
  23. 23.
    M.R. Douglas and S. Kachru, Rev. Mod. Phys. 79 (2007) 733 [arXiv:hep-th/0610102].MathSciNetADSCrossRefzbMATHGoogle Scholar
  24. 24.
    M.R. Douglas and R. Kallosh, JHEP 1006 (2010) 004 [arXiv:1001.4008].Google Scholar
  25. 25.
    R. Flauger, S. Paban, D. Robbins and T. Wrase, Phys. Rev. D79 (2009) [arXiv:0812.3886].Google Scholar
  26. 26.
    G.W. Gibbons, Aspects of Supergravity Theories, Three lectures given at GIFT Seminar on Theoretical Physics, San Feliu de Guixols, Spain, Jun 4-11, 1984.Google Scholar
  27. 27.
    S.B. Giddings, S. Kachru and J. Polchinski, Phys. Rev. D66 (2002) 106006 [arXiv: hep-th/0105097].MathSciNetGoogle Scholar
  28. 28.
    T.W. Grimm and J. Louis, Nucl. Phys. B718 (2005) 153 [arXiv:hep-th/0412277].MathSciNetGoogle Scholar
  29. 29.
    M. Grana, Phys. Rept. 423 (2006) 91 [arXiv:hep-th/0509003].MathSciNetCrossRefGoogle Scholar
  30. 30.
    S.S. Haque, G. Shiu, B. Underwood and T. Van Riet, Phys. Rev. D79 (2009) 086005 [arXiv:0810.5328].Google Scholar
  31. 31.
    T. House and E. Palti, Phys. Rev. D72 (2005) 026004 [arXiv:hep-th/0505177].MathSciNetGoogle Scholar
  32. 32.
    M.P. Hertzberg, S. Kachru, W. Taylor and M. Tegmark, JHEP 0712 (2007) 095 [arXiv:0711.2512].Google Scholar
  33. 33.
    M. Ihl, D. Robbins and T. Wrase, JHEP 0708 (2007) 043 [arXiv:0705.3410].Google Scholar
  34. 34.
    S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, Phys. Rev. D68 (2003) 046005 [arXiv: hep-th/0301240].MathSciNetGoogle Scholar
  35. 35.
    P. Koerber, D. Lust and D. Tsimpis, JHEP 0807 (2008) 017 [arXiv:0804.0614].Google Scholar
  36. 36.
    J.M. Maldacena and C. Nunez, Int. J. Mod. Phys. A16 (2001) 822 [arXiv:hep-th/0007018].MathSciNetADSGoogle Scholar
  37. 37.
    S.L. Parameswaran, S. Ramos-Sanchez and I. Zavala, arXiv:1009.3931.Google Scholar
  38. 38.
    D. Roest and J. Rosseel, Phys. Lett. B685 (2010) 201 [arXiv:0912.4440].MathSciNetADSGoogle Scholar
  39. 39.
    E. Silverstein, Phys. Rev. D77 (2008) 106006 [arXiv:0712.1196].MathSciNetGoogle Scholar
  40. 40.
    P.J. Steinhardt and D. Wesley, Phys. Rev. D79 (2009) 104026 [arXiv:0811.1614].Google Scholar
  41. 41.
    P.J. Steinhardt and D. Wesley, arXiv:1003.2815.Google Scholar
  42. 42.
    P.K. Townsend and M.N.R. Wohlfarth, Phys. Rev. Lett. 91 (2003) 061302 [arXiv: hep-th/0303097].MathSciNetADSCrossRefGoogle Scholar
  43. 43.
    G. Villadoro and F. Zwirner, JHEP 0506 (2005) 047 [arXiv:hep-th/0503169].Google Scholar
  44. 44.
    T. Wrase and M. Zagermann, Fortsch. Phys. 58 (2010) 906 [arXiv:1003.0029].MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Institute for Theoretical Physics & Center for Quantum Engineering and Spacetime Research (QUEST)Leibniz Universität HannoverHannoverGermany

Personalised recommendations